BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

583 related articles for article (PubMed ID: 19420534)

  • 21. Self-induced growth of vertical free-standing InAs nanowires on Si(111) by molecular beam epitaxy.
    Koblmüller G; Hertenberger S; Vizbaras K; Bichler M; Bao F; Zhang JP; Abstreiter G
    Nanotechnology; 2010 Sep; 21(36):365602. PubMed ID: 20702932
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Growth by molecular beam epitaxy and properties of inclined GaN nanowires on Si(001) substrate.
    Borysiuk J; Zytkiewicz ZR; Sobanska M; Wierzbicka A; Klosek K; Korona KP; Perkowska PS; Reszka A
    Nanotechnology; 2014 Apr; 25(13):135610. PubMed ID: 24598248
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Twinning superlattices in indium phosphide nanowires.
    Algra RE; Verheijen MA; Borgström MT; Feiner LF; Immink G; van Enckevort WJ; Vlieg E; Bakkers EP
    Nature; 2008 Nov; 456(7220):369-72. PubMed ID: 19020617
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Unveiling Variations in Electronic and Atomic Structures Due to Nanoscale Wurtzite and Zinc Blende Phase Separation in GaAs Nanowires.
    Zeng L; Olsson E
    Nano Lett; 2024 Jun; 24(22):6644-6650. PubMed ID: 38767455
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optical response of wurtzite and zinc blende GaP nanowire arrays.
    Aghaeipour M; Anttu N; Nylund G; Berg A; Lehmann S; Pistol ME
    Opt Express; 2015 Nov; 23(23):30177-87. PubMed ID: 26698498
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Engineering parallel and perpendicular polarized photoluminescence from a single semiconductor nanowire by crystal phase control.
    Ba Hoang T; Moses AF; Ahtapodov L; Zhou H; Dheeraj DL; van Helvoort AT; Fimland BO; Weman H
    Nano Lett; 2010 Aug; 10(8):2927-33. PubMed ID: 20604543
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural properties of <111>B -oriented III-V nanowires.
    Johansson J; Karlsson LS; Svensson CP; Mårtensson T; Wacaser BA; Deppert K; Samuelson L; Seifert W
    Nat Mater; 2006 Jul; 5(7):574-80. PubMed ID: 16783358
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Concurrent Zinc-Blende and Wurtzite Film Formation by Selection of Confined Growth Planes.
    Staudinger P; Mauthe S; Moselund KE; Schmid H
    Nano Lett; 2018 Dec; 18(12):7856-7862. PubMed ID: 30427685
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Crystal phase evolution in kinked GaN nanowires.
    Wu S; Wu S; Song W; Wang L; Yi X; Liu Z; Wang J; Li J
    Nanotechnology; 2020 Apr; 31(14):145713. PubMed ID: 31860878
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparative structure and optical properties of Ga-, In-, and Sn-doped ZnO nanowires synthesized via thermal evaporation.
    Bae SY; Na CW; Kang JH; Park J
    J Phys Chem B; 2005 Feb; 109(7):2526-31. PubMed ID: 16851252
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Internal structure of multiphase zinc-blende wurtzite gallium nitride nanowires.
    Jacobs BW; Ayres VM; Crimp MA; McElroy K
    Nanotechnology; 2008 Oct; 19(40):405706. PubMed ID: 21832635
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Anisotropic photonic properties of III-V nanowires in the zinc-blende and wurtzite phase.
    Wilhelm C; Larrue A; Dai X; Migas D; Soci C
    Nanoscale; 2012 Mar; 4(5):1446-54. PubMed ID: 22327202
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High optical quality single crystal phase wurtzite and zincblende InP nanowires.
    Vu TT; Zehender T; Verheijen MA; Plissard SR; Immink GW; Haverkort JE; Bakkers EP
    Nanotechnology; 2013 Mar; 24(11):115705. PubMed ID: 23455417
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fluctuating potentials in GaAs:Si nanowires: critical reduction of the influence of polytypism on the electronic structure.
    Ben Sedrine N; Ribeiro-Andrade R; Gustafsson A; Soares MR; Bourgard J; Teixeira JP; Salomé PMP; Correia MR; Moreira MVB; De Oliveira AG; González JC; Leitão JP
    Nanoscale; 2018 Feb; 10(8):3697-3708. PubMed ID: 29388656
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Growth of dilute nitride GaAsN/GaAs heterostructure nanowires on Si substrates.
    Araki Y; Yamaguchi M; Ishikawa F
    Nanotechnology; 2013 Feb; 24(6):065601. PubMed ID: 23324475
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sb-induced phase control of InAsSb nanowires grown by molecular beam epitaxy.
    Zhuang QD; Anyebe EA; Chen R; Liu H; Sanchez AM; Rajpalke MK; Veal TD; Wang ZM; Huang YZ; Sun HD
    Nano Lett; 2015 Feb; 15(2):1109-16. PubMed ID: 25559370
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Probing the electronic structure of ZnO nanowires by valence electron energy loss spectroscopy.
    Wang J; Li Q; Egerton RF
    Micron; 2007; 38(4):346-53. PubMed ID: 16938457
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Can antimonide-based nanowires form wurtzite crystal structure?
    Gorji Ghalamestani S; Lehmann S; Dick KA
    Nanoscale; 2016 Feb; 8(5):2778-86. PubMed ID: 26763161
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Raman and photoluminescence properties of highly Cu doped ZnO nanowires fabricated by vapor-liquid-solid process.
    Zhu H; Iqbal J; Xu H; Yu D
    J Chem Phys; 2008 Sep; 129(12):124713. PubMed ID: 19045054
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Simultaneous Growth of Pure Wurtzite and Zinc Blende Nanowires.
    Lehmann S; Wallentin J; Mårtensson EK; Ek M; Deppert K; Dick KA; Borgström MT
    Nano Lett; 2019 Apr; 19(4):2723-2730. PubMed ID: 30888174
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 30.