These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 19420560)

  • 1. Higher energy optical transitions in semiconducting carbon nanotubes.
    Jia Y; Yu G; Dong J
    Nanotechnology; 2009 Apr; 20(15):155708. PubMed ID: 19420560
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural, electronic, optical and vibrational properties of nanoscale carbons and nanowires: a colloquial review.
    Cole MW; Crespi VH; Dresselhaus MS; Dresselhaus G; Fischer JE; Gutierrez HR; Kojima K; Mahan GD; Rao AM; Sofo JO; Tachibana M; Wako K; Xiong Q
    J Phys Condens Matter; 2010 Aug; 22(33):334201. PubMed ID: 21386491
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum interference between the third and fourth exciton states in semiconducting carbon nanotubes using resonance Raman spectroscopy.
    Duque JG; Telg H; Chen H; Swan AK; Shreve AP; Tu X; Zheng M; Doorn SK
    Phys Rev Lett; 2012 Mar; 108(11):117404. PubMed ID: 22540509
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The optical resonances in carbon nanotubes arise from excitons.
    Wang F; Dukovic G; Brus LE; Heinz TF
    Science; 2005 May; 308(5723):838-41. PubMed ID: 15879212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical spectroscopy of individual single-walled carbon nanotubes of defined chiral structure.
    Sfeir MY; Beetz T; Wang F; Huang L; Huang XM; Huang M; Hone J; O'Brien S; Misewich JA; Heinz TF; Wu L; Zhu Y; Brus LE
    Science; 2006 Apr; 312(5773):554-6. PubMed ID: 16645089
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Communication: electronic band gaps of semiconducting zig-zag carbon nanotubes from many-body perturbation theory calculations.
    Umari P; Petrenko O; Taioli S; De Souza MM
    J Chem Phys; 2012 May; 136(18):181101. PubMed ID: 22583270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exciton binding energy in semiconducting single-walled carbon nanotubes.
    Ma YZ; Valkunas L; Bachilo SM; Fleming GR
    J Phys Chem B; 2005 Aug; 109(33):15671-4. PubMed ID: 16852986
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Linear optical and quadratic electro-optic response of carbon nanotubes: universal analytic expressions for arbitrary chirality.
    Zarifi A; Pedersen TG
    J Phys Condens Matter; 2008 Jul; 20(27):275211. PubMed ID: 21694372
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bright and dark excitons in semiconductor carbon nanotubes: insights from electronic structure calculations.
    Kilina S; Badaeva E; Piryatinski A; Tretiak S; Saxena A; Bishop AR
    Phys Chem Chem Phys; 2009 Jun; 11(21):4113-23. PubMed ID: 19458812
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transport diffusion of gases is rapid in flexible carbon nanotubes.
    Chen H; Johnson JK; Sholl DS
    J Phys Chem B; 2006 Feb; 110(5):1971-5. PubMed ID: 16471771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical investigation of quantum confinement in PbSe nanocrystals at different points in the Brillouin zone.
    Koole R; Allan G; Delerue C; Meijerink A; Vanmaekelbergh D; Houtepen AJ
    Small; 2008 Jan; 4(1):127-33. PubMed ID: 18098244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical and magnetic properties of boron fullerenes.
    Botti S; Castro A; Lathiotakis NN; Andrade X; Marques MA
    Phys Chem Chem Phys; 2009 Jun; 11(22):4523-7. PubMed ID: 19475170
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electronic properties of capped, finite-length armchair carbon nanotubes in an electric field.
    Chen C; Tsai CC; Lu JM; Hwang CC
    J Phys Chem B; 2006 Jun; 110(25):12384-7. PubMed ID: 16800563
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of B/N co-doping on the stability and electronic structure of single-walled carbon nanotubes by first-principles theory.
    Li YT; Chen TC
    Nanotechnology; 2009 Sep; 20(37):375705. PubMed ID: 19706947
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical investigation of electromechanical effects for graphyne carbon nanotubes.
    Coluci VR; Galvão DS; Baughman RH
    J Chem Phys; 2004 Aug; 121(7):3228-37. PubMed ID: 15291635
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of the exciton binding energy in single-walled carbon nanotubes.
    Wang Z; Pedrosa H; Krauss T; Rothberg L
    Phys Rev Lett; 2006 Feb; 96(4):047403. PubMed ID: 16486895
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural dependence of excitonic optical transitions and band-gap energies in carbon nanotubes.
    Dukovic G; Wang F; Song D; Sfeir MY; Heinz TF; Brus LE
    Nano Lett; 2005 Nov; 5(11):2314-8. PubMed ID: 16277475
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Raman excitation profiles of metallic single-walled carbon nanotubes.
    Nikolić B
    J Phys Condens Matter; 2010 Mar; 22(9):095302. PubMed ID: 21389412
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The nature of radiative transitions in o-doped boron nitride nanotubes.
    Gou G; Pan B; Shi L
    J Am Chem Soc; 2009 Apr; 131(13):4839-45. PubMed ID: 19278260
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Third and fourth optical transitions in semiconducting carbon nanotubes.
    Araujo PT; Doorn SK; Kilina S; Tretiak S; Einarsson E; Maruyama S; Chacham H; Pimenta MA; Jorio A
    Phys Rev Lett; 2007 Feb; 98(6):067401. PubMed ID: 17358983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.