These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 19420560)

  • 21. Electron-electron interaction effects on the optical excitations of semiconducting single-walled carbon nanotubes.
    Zhao H; Mazumdar S
    Phys Rev Lett; 2004 Oct; 93(15):157402. PubMed ID: 15524940
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evolution of ELNES spectra as a function of experimental settings for any uniaxial specimen: a fully relativistic study.
    Bocquet F; Bernier N; Saikaly W; Brosset C; Thibault J; Charaï A
    Ultramicroscopy; 2007; 107(2-3):81-94. PubMed ID: 16870339
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Excitons and many-electron effects in the optical response of single-walled boron nitride nanotubes.
    Park CH; Spataru CD; Louie SG
    Phys Rev Lett; 2006 Mar; 96(12):126105. PubMed ID: 16605933
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Exciton effect in deformed carbon nanotubes.
    Yu G; Jia Y; Dong J
    J Phys Condens Matter; 2007 Jul; 19(26):266222. PubMed ID: 21694098
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Excitonic absorption intensity of semiconducting and metallic carbon nanotubes.
    Verdenhalven E; Malić E
    J Phys Condens Matter; 2013 Jun; 25(24):245302. PubMed ID: 23709476
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Geometry and electronic stability of tungsten encapsulated silicon nanotubes.
    Peng Q; Shen J; Chen NX
    J Chem Phys; 2008 Jul; 129(3):034704. PubMed ID: 18647035
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Analysis of the interband optical transitions: characterization of synthetic DNA band structure.
    Díaz E
    J Chem Phys; 2008 May; 128(17):175101. PubMed ID: 18465940
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Intrinsic optical bistability of thin films of linear molecular aggregates: the two-exciton approximation.
    Klugkist JA; Malyshev VA; Knoester J
    J Chem Phys; 2008 Feb; 128(8):084706. PubMed ID: 18315071
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Critical behavior of the aqueous electrolytic system 3-methylpyridine+D2O+NaBr.
    Madhavan Unni PK
    J Chem Phys; 2006 Feb; 124(5):054505. PubMed ID: 16468892
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Exciton spectra and the microscopic structure of self-assembled porphyrin nanotubes.
    Vlaming SM; Augulis R; Stuart MC; Knoester J; van Loosdrecht PH
    J Phys Chem B; 2009 Feb; 113(8):2273-83. PubMed ID: 19193042
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Binding energy and mechanical stability of single- and multi-walled carbon nanotube serpentines.
    Zhao J; Lu L; Rabczuk T
    J Chem Phys; 2014 May; 140(20):204704. PubMed ID: 24880308
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Theoretical studies on tunneling ionizations of helium atom in intense laser fields.
    Nagaya K; Mishima K; Hayashi M; Lin SH
    J Chem Phys; 2006 Apr; 124(14):144303. PubMed ID: 16626192
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Elucidation of the electronic structure of semiconducting single-walled carbon nanotubes by electroabsorption spectroscopy.
    Zhao H; Mazumdar S
    Phys Rev Lett; 2007 Apr; 98(16):166805. PubMed ID: 17501449
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Intermediates in the melting transitions of aluminum nanoclusters.
    Poland D
    J Chem Phys; 2007 Feb; 126(5):054507. PubMed ID: 17302485
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Exciton-phonon coupling in molecular crystals: synergy between two intramolecular vibrational modes in quaterthiophene single crystals.
    Silvestri L; Tavazzi S; Spearman P; Raimondo L; Spano FC
    J Chem Phys; 2009 Jun; 130(23):234701. PubMed ID: 19548744
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electron interactions and scaling relations for optical excitations in carbon nanotubes.
    Kane CL; Mele EJ
    Phys Rev Lett; 2004 Nov; 93(19):197402. PubMed ID: 15600877
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fermi level engineering of single-walled carbon nanotubes by AuCl3 doping.
    Kim KK; Bae JJ; Park HK; Kim SM; Geng HZ; Park KA; Shin HJ; Yoon SM; Benayad A; Choi JY; Lee YH
    J Am Chem Soc; 2008 Sep; 130(38):12757-61. PubMed ID: 18729358
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dislocation onset and nearly axial glide in carbon nanotubes under torsion.
    Zhang DB; James RD; Dumitrică T
    J Chem Phys; 2009 Feb; 130(7):071101. PubMed ID: 19239277
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spectroscopic characteristics of differently produced single-walled carbon nanotubes.
    Li Z; Zheng L; Yan W; Pan Z; Wei S
    Chemphyschem; 2009 Sep; 10(13):2296-304. PubMed ID: 19569089
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Origin of the variation of exciton binding energy in semiconductors.
    Dvorak M; Wei SH; Wu Z
    Phys Rev Lett; 2013 Jan; 110(1):016402. PubMed ID: 23383813
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.