BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 19420568)

  • 81. Inkjet-Printing of Nanoparticle Gold and Silver Ink on Cyclic Olefin Copolymer for DNA-Sensing Applications.
    Trotter M; Juric D; Bagherian Z; Borst N; Gläser K; Meissner T; von Stetten FV; Zimmermann A
    Sensors (Basel); 2020 Feb; 20(5):. PubMed ID: 32121410
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Controlling the crack formation in inkjet-printed silver nanoparticle thin-films for high resolution patterning using intense pulsed light treatment.
    Gokhale P; Mitra D; Sowade E; Mitra KY; Gomes HL; Ramon E; Al-Hamry A; Kanoun O; Baumann RR
    Nanotechnology; 2017 Dec; 28(49):495301. PubMed ID: 28994394
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Study of Inkjet-Printed Silver Films Based on Nanoparticles and Metal-Organic Decomposition Inks with Different Curing Methods.
    Xiao P; Zhou Y; Gan L; Pan Z; Chen J; Luo D; Yao R; Chen J; Liang H; Ning H
    Micromachines (Basel); 2020 Jul; 11(7):. PubMed ID: 32664692
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Fabrication of capacitive acoustic resonators combining 3D printing and 2D inkjet printing techniques.
    Haque RI; Ogam E; Loussert C; Benaben P; Boddaert X
    Sensors (Basel); 2015 Oct; 15(10):26018-38. PubMed ID: 26473878
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Inkjet Printing of High Conductivity, Flexible Graphene Patterns.
    Secor EB; Prabhumirashi PL; Puntambekar K; Geier ML; Hersam MC
    J Phys Chem Lett; 2013 Apr; 4(8):1347-51. PubMed ID: 26282151
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Parametric study on conductive patterns by low-temperature sintering of micron silver ink.
    Zhao M; Tang G; Yang S; Fu S
    RSC Adv; 2023 Mar; 13(13):8636-8645. PubMed ID: 36936824
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Investigation and Prediction of Nano-Silver Line Quality upon Various Process Parameters in Inkjet Printing Process Based on an Experimental Method.
    Hui J; Zhang H; Lv J; Lee CH; Chen C; Yan Z; Wang JJ; Peng T; Guo L; Xu Z
    3D Print Addit Manuf; 2024 Apr; 11(2):e876-e895. PubMed ID: 38689913
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Copper nanoparticles: aqueous phase synthesis and conductive films fabrication at low sintering temperature.
    Deng D; Jin Y; Cheng Y; Qi T; Xiao F
    ACS Appl Mater Interfaces; 2013 May; 5(9):3839-46. PubMed ID: 23578010
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Tailoring controlled-release oral dosage forms by combining inkjet and flexographic printing techniques.
    Genina N; Fors D; Vakili H; Ihalainen P; Pohjala L; Ehlers H; Kassamakov I; Haeggström E; Vuorela P; Peltonen J; Sandler N
    Eur J Pharm Sci; 2012 Oct; 47(3):615-23. PubMed ID: 22902482
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Inkjet printing of nanosized silver colloids.
    Lee HH; Chou KS; Huang KC
    Nanotechnology; 2005 Oct; 16(10):2436-41. PubMed ID: 20818031
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Microstructures in All-Inkjet-Printed Textile Capacitors with Bilayer Interfaces of Polymer Dielectrics and Metal-Organic Decomposition Silver Electrodes.
    Kim I; Ju B; Zhou Y; Li BM; Jur JS
    ACS Appl Mater Interfaces; 2021 May; 13(20):24081-24094. PubMed ID: 33988966
    [TBL] [Abstract][Full Text] [Related]  

  • 92. UV-Cured Inkjet-Printed Silver Gate Electrode with Low Electrical Resistivity.
    Ning H; Zhou Y; Fang Z; Yao R; Tao R; Chen J; Cai W; Zhu Z; Yang C; Wei J; Wang L; Peng J
    Nanoscale Res Lett; 2017 Sep; 12(1):546. PubMed ID: 28948539
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Estimation of the properties of silver nanoparticle ink during laser sintering via in-situ electrical resistance measurement.
    Lee DG; Kim DK; Moon YJ; Moon SJ
    J Nanosci Nanotechnol; 2013 Sep; 13(9):5982-7. PubMed ID: 24205585
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Facile Synthesis of Silver Nanoparticles and Preparation of Conductive Ink.
    Hong GB; Luo YH; Chuang KJ; Cheng HY; Chang KC; Ma CM
    Nanomaterials (Basel); 2022 Jan; 12(1):. PubMed ID: 35010121
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Selective laser sintering of inkjet-printed silver nanoparticle inks on paper substrates to achieve highly conductive patterns.
    Balliu E; Andersson H; Engholm M; Öhlund T; Nilsson HE; Olin H
    Sci Rep; 2018 Jul; 8(1):10408. PubMed ID: 29991735
    [TBL] [Abstract][Full Text] [Related]  

  • 96. The effect of temperature on the electrical properties of inkjet-printed silver nanoparticle ink during electrical sintering.
    Moon SJ
    J Nanosci Nanotechnol; 2013 Sep; 13(9):6174-8. PubMed ID: 24205623
    [TBL] [Abstract][Full Text] [Related]  

  • 97. The fabrication of highly conductive and flexible Ag patterning through baking Ag nanosphere-nanoplate hybrid ink at a low temperature of 100 °C.
    Han YD; Zhang SM; Jing HY; Wei J; Bu FH; Zhao L; Lv XQ; Xu LY
    Nanotechnology; 2018 Apr; 29(13):135301. PubMed ID: 29432209
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Laser-Direct Writing of Silver Metal Electrodes on Transparent Flexible Substrates with High-Bonding Strength.
    Zhou W; Bai S; Ma Y; Ma D; Hou T; Shi X; Hu A
    ACS Appl Mater Interfaces; 2016 Sep; 8(37):24887-92. PubMed ID: 27560607
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Large-scale synthesis of copper nanoparticles by chemically controlled reduction for applications of inkjet-printed electronics.
    Lee Y; Choi JR; Lee KJ; Stott NE; Kim D
    Nanotechnology; 2008 Oct; 19(41):415604. PubMed ID: 21832649
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Control of chemical kinetics for sub-10 nm Cu nanoparticles to fabricate highly conductive ink below 150 °C.
    Choi CS; Jo YH; Kim MG; Lee HM
    Nanotechnology; 2012 Feb; 23(6):065601. PubMed ID: 22248919
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.