These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 19420569)

  • 1. Manipulation of cadmium selenide nanorods with an atomic force microscope.
    Tranvouez E; Orieux A; Boer-Duchemin E; Devillers CH; Huc V; Comtet G; Dujardin G
    Nanotechnology; 2009 Apr; 20(16):165304. PubMed ID: 19420569
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Active drift compensation applied to nanorod manipulation with an atomic force microscope.
    Tranvouez E; Boer-Duchemin E; Comtet G; Dujardin G
    Rev Sci Instrum; 2007 Nov; 78(11):115103. PubMed ID: 18052500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The interaction of an atomic force microscope tip with a nano-object: a model for determining the lateral force.
    Boer-Duchemin E; Tranvouez E; Dujardin G
    Nanotechnology; 2010 Nov; 21(45):455704. PubMed ID: 20947943
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-resolution manipulation of gold nanorods with an atomic force microscope.
    Craciun AD; Donnio B; Gallani JL; Rastei MV
    Nanotechnology; 2019 Nov; 31(8):085302. PubMed ID: 31683263
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrodynamic effects of the tip movement on surface nanobubbles: a combined tapping mode, lift mode and force volume mode AFM study.
    Walczyk W; Hain N; Schönherr H
    Soft Matter; 2014 Aug; 10(32):5945-54. PubMed ID: 24988375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the interaction between AFM tips and surface nanobubbles.
    Walczyk W; Schönherr H
    Langmuir; 2014 Jun; 30(24):7112-26. PubMed ID: 24856074
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dimensions and the profile of surface nanobubbles: tip-nanobubble interactions and nanobubble deformation in atomic force microscopy.
    Walczyk W; Schönherr H
    Langmuir; 2014 Oct; 30(40):11955-65. PubMed ID: 25222759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis the effect of different geometries of AFM's cantilever on the dynamic behavior and the critical forces of three-dimensional manipulation.
    Korayem MH; Saraie MB; Saraee MB
    Ultramicroscopy; 2017 Apr; 175():9-24. PubMed ID: 28110179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-assembly and wetting properties of gold nanorod-CTAB molecules on HOPG.
    Ahmad I; Derkink F; Boulogne T; Bampoulis P; Zandvliet HJW; Khan HU; Jan R; Kooij ES
    Beilstein J Nanotechnol; 2019; 10():696-705. PubMed ID: 30931211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solid-state SiO₂ nano-gears AFM tip manipulation on HOPG.
    Yang J; Deng J; Troadec C; Ondarçuhu T; Joachim C
    Nanotechnology; 2014 Nov; 25(46):465305. PubMed ID: 25354688
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Manipulation of Proteins on Mica by Atomic Force Microscopy.
    Lea AS; Pungor A; Hlady V; Andrade JD; Herron JN; Voss EW
    Langmuir; 1992; 8(1):68-73. PubMed ID: 25147425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tuning the instability in static mode atomic force spectroscopy as obtained in an AFM by applying an electric field between the tip and the substrate.
    Biswas S; Raychaudhuri AK; Sreeram PA; Dietzel D
    Ultramicroscopy; 2012 Nov; 122():19-25. PubMed ID: 22960002
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accurate measurement of Atomic Force Microscope cantilever deflection excluding tip-surface contact with application to force calibration.
    Slattery AD; Blanch AJ; Quinton JS; Gibson CT
    Ultramicroscopy; 2013 Aug; 131():46-55. PubMed ID: 23685172
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural network sliding mode controller of atomic force microscope-based manipulation with different cantilever probes.
    Korayem MH; Esmaeilzadehha S
    Microsc Res Tech; 2019 Jul; 82(7):993-1003. PubMed ID: 30839142
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the adhesion between fine particles and nanocontacts: an atomic force microscope study.
    Farshchi-Tabrizi M; Kappl M; Cheng Y; Gutmann J; Butt HJ
    Langmuir; 2006 Feb; 22(5):2171-84. PubMed ID: 16489804
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of tip size on force measurement in atomic force microscopy.
    Lim LT; Wee AT; O'Shea SJ
    Langmuir; 2008 Mar; 24(6):2271-3. PubMed ID: 18266396
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functionalization of atomic force microscope tips by dielectrophoretic assembly of Gd(2)O(3):Eu(3+) nanorods.
    Macedo AG; Ananias D; André PS; Sá Ferreira RA; Kholkin AL; Carlos LD; Rocha J
    Nanotechnology; 2008 Jul; 19(29):295702. PubMed ID: 21730607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Liquid-assisted tip manipulation: fabrication of twisted bilayer graphene superlattices on HOPG.
    Yin LJ; Wang WX; Feng KK; Nie JC; Xiong CM; Dou RF; Naugle DG
    Nanoscale; 2015 Sep; 7(36):14865-71. PubMed ID: 26290114
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterizing the free and surface-coupled vibrations of heated-tip atomic force microscope cantilevers.
    Killgore JP; Tung RC; Hurley DC
    Nanotechnology; 2014 Aug; 25(34):345701. PubMed ID: 25098183
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tip convolution on HOPG surfaces measured in AM-AFM and interpreted using a combined experimental and simulation approach.
    Hu X; Chan N; Martini A; Egberts P
    Nanotechnology; 2017 Jan; 28(2):025702. PubMed ID: 27905317
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.