These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 19420793)
1. Polypseudorotaxane formation of randomly-pegylated insulin with cyclodextrins: slow release and resistance to enzymatic degradation. Higashi T; Hirayama F; Misumi S; Motoyama K; Arima H; Uekama K Chem Pharm Bull (Tokyo); 2009 May; 57(5):541-4. PubMed ID: 19420793 [TBL] [Abstract][Full Text] [Related]
2. Design and evaluation of polypseudorotaxanes of pegylated insulin with cyclodextrins as sustained release system. Higashi T; Hirayama F; Misumi S; Arima H; Uekama K Biomaterials; 2008 Oct; 29(28):3866-71. PubMed ID: 18620750 [TBL] [Abstract][Full Text] [Related]
3. Polypseudorotaxanes of pegylated insulin with cyclodextrins: application to sustained release system. Higashi T; Hirayama F; Arima H; Uekama K Bioorg Med Chem Lett; 2007 Apr; 17(7):1871-4. PubMed ID: 17291751 [TBL] [Abstract][Full Text] [Related]
4. Slow-release system of pegylated lysozyme utilizing formation of polypseudorotaxanes with cyclodextrins. Higashi T; Hirayama F; Yamashita S; Misumi S; Arima H; Uekama K Int J Pharm; 2009 Jun; 374(1-2):26-32. PubMed ID: 19446755 [TBL] [Abstract][Full Text] [Related]
5. Potential use of polypseudorotaxanes of pegylated polyamidoamine dendrimer with cyclodextrins as novel sustained release systems for DNA. Motoyama K; Hayashida K; Arima H Chem Pharm Bull (Tokyo); 2011; 59(4):476-9. PubMed ID: 21467677 [TBL] [Abstract][Full Text] [Related]
6. Potential use of gamma-cyclodextrin polypseudorotaxane hydrogels as an injectable sustained release system for insulin. Abu Hashim II; Higashi T; Anno T; Motoyama K; Abd-ElGawad AE; El-Shabouri MH; Borg TM; Arima H Int J Pharm; 2010 Jun; 392(1-2):83-91. PubMed ID: 20298768 [TBL] [Abstract][Full Text] [Related]
7. Polypseudorotaxanes of pegylated α-cyclodextrin/polyamidoamine dendrimer conjugate with cyclodextrins as a sustained release system for DNA. Motoyama K; Hayashida K; Higashi T; Arima H Bioorg Med Chem; 2012 Feb; 20(4):1425-33. PubMed ID: 22277591 [TBL] [Abstract][Full Text] [Related]
8. Cyclodextrin-based sustained and controllable release system of insulin utilizing the combination system of self-assembly PEGylation and polypseudorotaxane formation. Hirotsu T; Higashi T; Motoyama K; Arima H Carbohydr Polym; 2017 May; 164():42-48. PubMed ID: 28325342 [TBL] [Abstract][Full Text] [Related]
9. Cyclodextrin/poly(ethylene glycol) polypseudorotaxane hydrogels as a promising sustained-release system for lysozyme. Higashi T; Tajima A; Motoyama K; Arima H J Pharm Sci; 2012 Aug; 101(8):2891-9. PubMed ID: 22678818 [TBL] [Abstract][Full Text] [Related]
10. Preparation of polypseudorotaxanes composed of cyclodextrin and polymers in microspheres. Shinohara K; Yamashita M; Uchida W; Okabe C; Oshima S; Sugino M; Egawa Y; Miki R; Hosoya O; Fujihara T; Ishimaru Y; Kishino T; Seki T; Juni K Chem Pharm Bull (Tokyo); 2014; 62(10):962-6. PubMed ID: 25273055 [TBL] [Abstract][Full Text] [Related]
11. Design and Evaluation of the Highly Concentrated Human IgG Formulation Using Cyclodextrin Polypseudorotaxane Hydrogels. Higashi T; Tajima A; Ohshita N; Hirotsu T; Abu Hashim II; Motoyama K; Koyama S; Iibuchi R; Mieda S; Handa K; Kimoto T; Arima H AAPS PharmSciTech; 2015 Dec; 16(6):1290-8. PubMed ID: 25776984 [TBL] [Abstract][Full Text] [Related]
12. A Pseudopolyrotaxane for Glucose-Responsive Insulin Release: The Effect of Binding Ability and Spatial Arrangement of Phenylboronic Acid Group. Seki T; Abe K; Egawa Y; Miki R; Juni K; Seki T Mol Pharm; 2016 Nov; 13(11):3807-3815. PubMed ID: 27715064 [TBL] [Abstract][Full Text] [Related]
13. Polypseudorotaxane-based supramolecular hydrogels consisting of cyclodextrins and Pluronics as stabilizing agents for antibody drugs. Ohshita N; Motoyama K; Iohara D; Hirayama F; Taharabaru T; Watabe N; Kawabata Y; Onodera R; Higashi T Carbohydr Polym; 2021 Mar; 256():117419. PubMed ID: 33483011 [TBL] [Abstract][Full Text] [Related]
14. Fabrication of novel coumarin derivative functionalized polypseudorotaxane micelles for drug delivery. Chang J; Li Y; Wang G; He B; Gu Z Nanoscale; 2013 Jan; 5(2):813-20. PubMed ID: 23235914 [TBL] [Abstract][Full Text] [Related]
16. Prednisolone-α-cyclodextrin-star PEG polypseudorotaxanes with controlled drug delivery properties. Bílková E; Sedlák M; Dvořák B; Ventura K; Knotek P; Beneš L Org Biomol Chem; 2010 Dec; 8(23):5423-30. PubMed ID: 20859603 [TBL] [Abstract][Full Text] [Related]
17. Polypseudorotaxane functionalized magnetic nanoparticles as a dual responsive carrier for roxithromycin delivery. Ke Y; Zhang X; Liu C; Xiao M; Li H; Fan J; Fu P; Wang S; Zan F; Wu G Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():159-170. PubMed ID: 30889688 [TBL] [Abstract][Full Text] [Related]
18. Preparation and evaluation of cyclodextrin polypseudorotaxane with PEGylated liposome as a sustained release drug carrier. Hayashida K; Higashi T; Kono D; Motoyama K; Wada K; Arima H Beilstein J Org Chem; 2014; 10():2756-64. PubMed ID: 25550741 [TBL] [Abstract][Full Text] [Related]
19. Sugar-appended polyamidoamine dendrimer conjugates with cyclodextrins as cell-specific non-viral vectors. Arima H; Motoyama K; Higashi T Adv Drug Deliv Rev; 2013 Aug; 65(9):1204-14. PubMed ID: 23602906 [TBL] [Abstract][Full Text] [Related]
20. Preparation and characterization of polypseudorotaxanes based on block-selected inclusion complexation between poly(propylene oxide)-poly(ethylene oxide)-poly(propylene oxide) triblock copolymers and alpha-cyclodextrin. Li J; Ni X; Zhou Z; Leong KW J Am Chem Soc; 2003 Feb; 125(7):1788-95. PubMed ID: 12580604 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]