These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 19420991)

  • 1. Production, purification, and characterization of soluble NADH-flavin Oxidoreductase (StyB) from Pseudomonas putida SN1.
    Yeo YJ; Shin S; Lee SG; Park S; Jeong YJ
    J Microbiol Biotechnol; 2009 Apr; 19(4):362-7. PubMed ID: 19420991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biochemical characterization of StyAB from Pseudomonas sp. strain VLB120 as a two-component flavin-diffusible monooxygenase.
    Otto K; Hofstetter K; Röthlisberger M; Witholt B; Schmid A
    J Bacteriol; 2004 Aug; 186(16):5292-302. PubMed ID: 15292130
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional and structural characterization of a thermostable flavin reductase from Geobacillus mahadii Geo-05.
    Husain NAC; Jamaluddin H; Jonet MA
    Int J Biol Macromol; 2024 Aug; 275(Pt 2):133721. PubMed ID: 38986972
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Camphor pathway redux: functional recombinant expression of 2,5- and 3,6-diketocamphane monooxygenases of Pseudomonas putida ATCC 17453 with their cognate flavin reductase catalyzing Baeyer-Villiger reactions.
    Iwaki H; Grosse S; Bergeron H; Leisch H; Morley K; Hasegawa Y; Lau PC
    Appl Environ Microbiol; 2013 May; 79(10):3282-93. PubMed ID: 23524667
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High pressure refolding, purification, and crystallization of flavin reductase from Sulfolobus tokodaii strain 7.
    Okai M; Ohtsuka J; Asano A; Guo L; Miyakawa T; Miyazono K; Nakamura A; Okada A; Zheng H; Kimura K; Nagata K; Tanokura M
    Protein Expr Purif; 2012 Aug; 84(2):214-8. PubMed ID: 22722101
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A mechanistic study on SMOB-ADP1: an NADH:flavin oxidoreductase of the two-component styrene monooxygenase of Acinetobacter baylyi ADP1.
    Gröning JA; Kaschabek SR; Schlömann M; Tischler D
    Arch Microbiol; 2014 Dec; 196(12):829-45. PubMed ID: 25116410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The NADH:flavin oxidoreductase Nox from Rhodococcus erythropolis MI2 is the key enzyme of 4,4'-dithiodibutyric acid degradation.
    Khairy H; Wübbeler JH; Steinbüchel A
    Lett Appl Microbiol; 2016 Dec; 63(6):434-441. PubMed ID: 27564089
    [TBL] [Abstract][Full Text] [Related]  

  • 8. LuxG is a functioning flavin reductase for bacterial luminescence.
    Nijvipakul S; Wongratana J; Suadee C; Entsch B; Ballou DP; Chaiyen P
    J Bacteriol; 2008 Mar; 190(5):1531-8. PubMed ID: 18156264
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Escherichia coli ferredoxin-NADP+ reductase and oxygen-insensitive nitroreductase are capable of functioning as ferric reductase and of driving the Fenton reaction.
    Takeda K; Sato J; Goto K; Fujita T; Watanabe T; Abo M; Yoshimura E; Nakagawa J; Abe A; Kawasaki S; Niimura Y
    Biometals; 2010 Aug; 23(4):727-37. PubMed ID: 20407804
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Asp305Gly mutation improved the activity and stability of the styrene monooxygenase for efficient epoxide production in Pseudomonas putida KT2440.
    Tan C; Zhang X; Zhu Z; Xu M; Yang T; Osire T; Yang S; Rao Z
    Microb Cell Fact; 2019 Jan; 18(1):12. PubMed ID: 30678678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Purification and characterisation of the NADH:acceptor reductase component of xylene monooxygenase encoded by the TOL plasmid pWW0 of Pseudomonas putida mt-2.
    Shaw JP; Harayama S
    Eur J Biochem; 1992 Oct; 209(1):51-61. PubMed ID: 1327782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Bacterial Multidomain NAD-Independent d-Lactate Dehydrogenase Utilizes Flavin Adenine Dinucleotide and Fe-S Clusters as Cofactors and Quinone as an Electron Acceptor for d-Lactate Oxidization.
    Jiang T; Guo X; Yan J; Zhang Y; Wang Y; Zhang M; Sheng B; Ma C; Xu P; Gao C
    J Bacteriol; 2017 Nov; 199(22):. PubMed ID: 28847921
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The styrene monooxygenase system.
    Gassner GT
    Methods Enzymol; 2019; 620():423-453. PubMed ID: 31072496
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression, biochemical characterization, and mutation of a water forming NADH: FMN oxidoreductase from Lactobacillus rhamnosus.
    Li FL; Su WB; Tao QL; Zhang LY; Zhang YW
    Enzyme Microb Technol; 2020 Mar; 134():109464. PubMed ID: 32044036
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functions of flavin reductase and quinone reductase in 2,4,6-trichlorophenol degradation by Cupriavidus necator JMP134.
    Belchik SM; Xun L
    J Bacteriol; 2008 Mar; 190(5):1615-9. PubMed ID: 18165297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ferredoxin-NADP+ reductase from Pseudomonas putida functions as a ferric reductase.
    Yeom J; Jeon CO; Madsen EL; Park W
    J Bacteriol; 2009 Mar; 191(5):1472-9. PubMed ID: 19114475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural and functional characterization of mercuric reductase from Lysinibacillus sphaericus strain G1.
    Bafana A; Khan F; Suguna K
    Biometals; 2017 Oct; 30(5):809-819. PubMed ID: 28894951
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coordinated production and utilization of FADH2 by NAD(P)H-flavin oxidoreductase and 4-hydroxyphenylacetate 3-monooxygenase.
    Louie TM; Xie XS; Xun L
    Biochemistry; 2003 Jun; 42(24):7509-17. PubMed ID: 12809507
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional expression, purification, and characterization of the recombinant Baeyer-Villiger monooxygenase MekA from Pseudomonas veronii MEK700.
    Völker A; Kirschner A; Bornscheuer UT; Altenbuchner J
    Appl Microbiol Biotechnol; 2008 Jan; 77(6):1251-60. PubMed ID: 18034235
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nature of the reaction intermediates in the flavin adenine dinucleotide-dependent epoxidation mechanism of styrene monooxygenase.
    Kantz A; Gassner GT
    Biochemistry; 2011 Feb; 50(4):523-32. PubMed ID: 21166448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.