These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 19421252)

  • 1. Improvement in retinal image quality with dynamic correction of the eye's aberrations.
    Hofer H; Chen L; Yoon GY; Singer B; Yamauchi Y; Williams DR
    Opt Express; 2001 May; 8(11):631-43. PubMed ID: 19421252
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics of the eye's wave aberration.
    Hofer H; Artal P; Singer B; Aragón JL; Williams DR
    J Opt Soc Am A Opt Image Sci Vis; 2001 Mar; 18(3):497-506. PubMed ID: 11265680
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive optics for vision: the eye's adaptation to point spread function.
    Artal P; Chen L; Fernández EJ; Singer B; Manzanera S; Williams DR
    J Refract Surg; 2003; 19(5):S585-7. PubMed ID: 14518748
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monochromatic aberrations of the human eye in a large population.
    Porter J; Guirao A; Cox IG; Williams DR
    J Opt Soc Am A Opt Image Sci Vis; 2001 Aug; 18(8):1793-803. PubMed ID: 11488483
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of positive coupling of the eye's trefoil and coma in retinal image quality and visual acuity.
    Villegas EA; Alcón E; Artal P
    J Opt Soc Am A Opt Image Sci Vis; 2012 Aug; 29(8):1667-72. PubMed ID: 23201882
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural compensation for the eye's optical aberrations.
    Artal P; Chen L; Fernández EJ; Singer B; Manzanera S; Williams DR
    J Vis; 2004 Apr; 4(4):281-7. PubMed ID: 15134475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A method to predict refractive errors from wave aberration data.
    Guirao A; Williams DR
    Optom Vis Sci; 2003 Jan; 80(1):36-42. PubMed ID: 12553542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Method for optimizing the correction of the eye's higher-order aberrations in the presence of decentrations.
    Guirao A; Cox IG; Williams DR
    J Opt Soc Am A Opt Image Sci Vis; 2002 Jan; 19(1):126-8. PubMed ID: 11778714
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of rotation and translation on the expected benefit of an ideal method to correct the eye's higher-order aberrations.
    Guirao A; Williams DR; Cox IG
    J Opt Soc Am A Opt Image Sci Vis; 2001 May; 18(5):1003-15. PubMed ID: 11336203
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of cardiopulmonary signals in the dynamics of the eye's wavefront aberrations.
    Muma M; Iskander DR; Collins MJ
    IEEE Trans Biomed Eng; 2010 Feb; 57(2):373-83. PubMed ID: 19789099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced visual acuity and image perception following correction of highly aberrated eyes using an adaptive optics visual simulator.
    Rocha KM; Vabre L; Chateau N; Krueger RR
    J Refract Surg; 2010 Jan; 26(1):52-6. PubMed ID: 20199013
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Closed-loop adaptive optics in the human eye.
    Fernández EJ; Iglesias I; Artal P
    Opt Lett; 2001 May; 26(10):746-8. PubMed ID: 18040440
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aberrations and retinal image quality of the normal human eye.
    Liang J; Williams DR
    J Opt Soc Am A Opt Image Sci Vis; 1997 Nov; 14(11):2873-83. PubMed ID: 9379245
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of the polarization on ocular wave aberration measurements.
    Prieto PM; Vargas-Martín F; McLellan JS; Burns SA
    J Opt Soc Am A Opt Image Sci Vis; 2002 Apr; 19(4):809-14. PubMed ID: 11934175
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Effects of single mode's high-order aberrations on visual acuity corrected using adaptive optics technique].
    Li SM; Xiong Y; Li J; Zhou YH; Dai Y; Zhang YD; Jiang WH; Wang NL
    Zhonghua Yan Ke Za Zhi; 2011 Oct; 47(10):934-7. PubMed ID: 22321505
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurement of the eye's near infrared wave-front aberration using the objective crossed-cylinder aberroscope technique.
    López-Gil N; Howland HC
    Vision Res; 1999 Jun; 39(12):2031-7. PubMed ID: 10343787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correction of the aberrations in the human eye with a liquid-crystal spatial light modulator: limits to performance.
    Vargas-Martín F; Prieto PM; Artal P
    J Opt Soc Am A Opt Image Sci Vis; 1998 Sep; 15(9):2552-62. PubMed ID: 9729868
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of interactions among wave aberrations on optical image quality.
    McLellan JS; Prieto PM; Marcos S; Burns SA
    Vision Res; 2006 Sep; 46(18):3009-16. PubMed ID: 16697435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Closed-loop aberration correction by use of a modal Zernike wave-front sensor.
    Neil MA; Booth MJ; Wilson T
    Opt Lett; 2000 Aug; 25(15):1083-5. PubMed ID: 18064278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Membrane deformable mirror for adaptive optics: performance limits in visual optics.
    Fernandez E; Artal P
    Opt Express; 2003 May; 11(9):1056-69. PubMed ID: 19465970
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.