These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 19421262)

  • 1. Limits of scalar diffraction theory and an iterative angular spectrum algorithm for finite aperture diffractive optical element design.
    Mellin S; Nordin G
    Opt Express; 2001 Jun; 8(13):705-22. PubMed ID: 19421262
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rigorous electromagnetic design of finite-aperture diffractive optical elements by use of an iterative optimization algorithm.
    Di F; Yingbai Y; Guofan J; Qiaofeng T; Liu H
    J Opt Soc Am A Opt Image Sci Vis; 2003 Sep; 20(9):1739-46. PubMed ID: 12968646
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A rigorous unidirectional method for designing finite aperture diffractive optical elements.
    Jiang J; Nordin G
    Opt Express; 2000 Sep; 7(6):237-42. PubMed ID: 19407871
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Iterative scalar nonparaxial algorithm for the design of Fourier phase elements.
    Nguyen GN; Heggarty K; Bacher A; Jakobs PJ; Häringer D; Gérard P; Pfeiffer P; Meyrueis P
    Opt Lett; 2014 Oct; 39(19):5551-4. PubMed ID: 25360925
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling of the angular tolerancing of an effective medium diffractive lens using combined finite difference time domain and radiation spectrum method algorithms.
    Raulot V; Gérard P; Serio B; Flury M; Kress B; Meyrueis P
    Opt Express; 2010 Aug; 18(17):17974-82. PubMed ID: 20721184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonlinear least-squares and phase-shifting quantization methods for diffractive optical element design.
    Chen CH; Sawchuk AA
    Appl Opt; 1997 Oct; 36(29):7297-306. PubMed ID: 18264238
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Field stitching algorithm for the analysis of electrically large diffractive optical elements.
    Prather DW; Shi S; Bergey JS
    Opt Lett; 1999 Mar; 24(5):273-5. PubMed ID: 18071477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of iterative angular spectrum and optimal rotation angle methods in designing beam-fanners.
    Kazemi SH; Mirsalehi MM; Attari AR
    Opt Express; 2009 Aug; 17(17):14825-31. PubMed ID: 19687961
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization and analysis of infrared multilayer diffractive optical elements with finite feature sizes.
    Yang C; Yang H; Li C; Xue C
    Appl Opt; 2019 Apr; 58(10):2589-2595. PubMed ID: 31045058
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interference effects in far-field diffractive optical elements.
    Waddie AJ; Taghizadeh MR
    Appl Opt; 1999 Oct; 38(28):5915-9. PubMed ID: 18324108
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diffraction efficiency sensitivity to oblique incident angle for multilayer diffractive optical elements.
    Yang H; Xue C; Li C; Wang J; Zhang R
    Appl Opt; 2016 Sep; 55(25):7126-33. PubMed ID: 27607291
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimal design of multilayer diffractive optical elements with effective area method.
    Yang H; Xue C; Li C; Wang J
    Appl Opt; 2016 Mar; 55(7):1675-82. PubMed ID: 26974629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rigorous microlens design using vector electromagnetic method combined with simulated annealing optimization.
    Zuo HJ; Zhang JY; Ying YL; Zhang BP; Hou ZJ; Chen HX; Si JJ
    Opt Express; 2014 May; 22(10):12653-8. PubMed ID: 24921382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-dimensionally-periodic diffractive optical elements: limitations of scalar analysis.
    Glytsis EN
    J Opt Soc Am A Opt Image Sci Vis; 2002 Apr; 19(4):702-15. PubMed ID: 11934163
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficiency analysis of diffractive lenses.
    Levy U; Mendlovic D; Marom E
    J Opt Soc Am A Opt Image Sci Vis; 2001 Jan; 18(1):86-93. PubMed ID: 11152007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diffractive optical element design with memory-matrix-based identification methodology.
    Pansatiankul DE; Sawchuk AA
    Appl Opt; 2000 Nov; 39(32):5921-8. PubMed ID: 18354595
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional analysis of subwavelength diffractive optical elements with the finite-difference time-domain method.
    Mirotznik MS; Prather DW; Mait JN; Beck WA; Shi S; Gao X
    Appl Opt; 2000 Jun; 39(17):2871-80. PubMed ID: 18345211
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic local search algorithm for optimization design of diffractive optical elements.
    Zhou G; Chen Y; Wang Z; Song H
    Appl Opt; 1999 Jul; 38(20):4281-90. PubMed ID: 18323913
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of a diffractive optical element for wide spectral bandwidth.
    Arieli Y; Ozeri S; Eisenberg N; Noach S
    Opt Lett; 1998 Jun; 23(11):823-4. PubMed ID: 18087353
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Collimating cylindrical diffractive lenses: rigorous electromagnetic analysis and scalar approximation.
    Glytsis EN; Harrigan ME; Hirayama K; Gaylord TK
    Appl Opt; 1998 Jan; 37(1):34-43. PubMed ID: 18268557
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.