These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 19421565)

  • 1. High density p-type Bi0.5Sb1.5Te3 nanowires by electrochemical templating through ion-track lithography.
    Li X; Koukharenko E; Nandhakumar IS; Tudor J; Beeby SP; White NM
    Phys Chem Chem Phys; 2009 May; 11(18):3584-90. PubMed ID: 19421565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synergistic Optimization of Electrical-Thermal-Mechanical Properties of the In-Filled CoSb
    Zhu J; Liu Z; Tong X; Xia A; Xu D; Lei Y; Yu J; Tang D; Ruan X; Zhao W
    ACS Appl Mater Interfaces; 2021 May; 13(20):23894-23904. PubMed ID: 34000180
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced Thermoelectric Performances of CNTs-Reinforced Cement Composites with Bi
    Zhou H; Liu H; Qian G; Xu P; Yu H; Cai J; Zheng J
    Nanomaterials (Basel); 2022 Nov; 12(21):. PubMed ID: 36364660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermoelectric properties of Cu-dispersed bi0.5sb1.5te3.
    Kim IH; Choi SM; Seo WS; Cheong DI
    Nanoscale Res Lett; 2012 Jan; 7(1):2. PubMed ID: 22221588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermoelectric Performance Enhancement in Commercial Bi
    Li S; Zhao W; Cheng Y; Chen L; Xu M; Guo K; Pan F
    ACS Appl Mater Interfaces; 2023 Jan; 15(1):1167-1174. PubMed ID: 36546598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement of Thermoelectric Performance in Bi
    Cheng Y; Yang J; Luo Y; Li W; Vtyurin A; Jiang Q; Dunn S; Yan H
    ACS Appl Mater Interfaces; 2022 Aug; 14(32):37204-37212. PubMed ID: 35917399
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation and thermoelectric properties of Ag-dispersed Bi0.5Sb1.5Te3.
    Kim IH; Choi SM; Sea WS; Cheong DI
    J Nanosci Nanotechnol; 2013 May; 13(5):3660-4. PubMed ID: 23858923
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Achieving Out-of-Plane Thermoelectric Figure of Merit
    Park NW; Lee WY; Yoon YS; Kim GS; Yoon YG; Lee SK
    ACS Appl Mater Interfaces; 2019 Oct; 11(41):38247-38254. PubMed ID: 31542917
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-performance dispenser printed MA p-type Bi(0.5)Sb(1.5)Te(3) flexible thermoelectric generators for powering wireless sensor networks.
    Madan D; Wang Z; Chen A; Wright PK; Evans JW
    ACS Appl Mater Interfaces; 2013 Nov; 5(22):11872-6. PubMed ID: 24160841
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards high refrigeration capability: the controllable structure of hierarchical Bi(0.5)Sb(1.5)Te3 flakes on a metal electrode.
    Cao L; Deng Y; Gao H; Wang Y; Chen X; Zhu Z
    Phys Chem Chem Phys; 2015 Mar; 17(10):6809-18. PubMed ID: 25669900
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tuning the crystallinity of thermoelectric Bi(2)Te(3) nanowire arrays grown by pulsed electrodeposition.
    Lee J; Farhangfar S; Lee J; Cagnon L; Scholz R; Gösele U; Nielsch K
    Nanotechnology; 2008 Sep; 19(36):365701. PubMed ID: 21828882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing Thermoelectric and Cooling Performance of Bi
    Li C; Li W; Sun C; Ma Z; Wei Y; Ma W; Yang B; Li X; Luo Y; Yang J
    ACS Appl Mater Interfaces; 2024 Aug; 16(34):45224-45233. PubMed ID: 39149867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Excellent Thermoelectric Performance from In Situ Reaction between Co Nanoparticles and BiSbTe Flexible Films.
    Zhao Y; Nie X; Sun C; Chen Y; Ke S; Li C; Zhu W; Sang X; Zhao W; Zhang Q
    ACS Appl Mater Interfaces; 2021 Dec; 13(49):58746-58753. PubMed ID: 34865482
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compressive Fatigue Behavior and Its Influence on the Thermoelectric Properties of p-Type Bi
    Zheng Y; Zhang Q; Su X; Tang X
    ACS Appl Mater Interfaces; 2019 Oct; 11(43):40091-40098. PubMed ID: 31589012
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High Performance Thermoelectric Power of Bi
    Pang K; Yuan M; Zhang Q; Li Y; Zhang Y; Zhou W; Wu G; Tan X; Noudem JG; Cui C; Hu H; Wu J; Sun P; Liu GQ; Jiang J
    Small; 2024 Mar; 20(12):e2306701. PubMed ID: 37948419
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Performance Ag-Modified Bi
    Shang H; Li T; Luo D; Yu L; Zou Q; Huang D; Xiao L; Gu H; Ren Z; Ding F
    ACS Appl Mater Interfaces; 2020 Feb; 12(6):7358-7365. PubMed ID: 31967776
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unraveling electronic origins for boosting thermoelectric performance of p-type (Bi,Sb)
    Cheng R; Ge H; Huang S; Xie S; Tong Q; Sang H; Yan F; Zhu L; Wang R; Liu Y; Hong M; Uher C; Zhang Q; Liu W; Tang X
    Sci Adv; 2024 May; 10(21):eadn9959. PubMed ID: 38787957
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal properties of bi nanowire arrays with different orientations and diameters.
    Zhu Y; Dou X; Huang X; Li L; Li G
    J Phys Chem B; 2006 Dec; 110(51):26189-93. PubMed ID: 17181275
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-quality ultralong Bi2S3 nanowires: structure, growth, and properties.
    Yu Y; Jin CH; Wang RH; Chen Q; Peng LM
    J Phys Chem B; 2005 Oct; 109(40):18772-6. PubMed ID: 16853415
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct electrodeposition of highly dense Bi/Sb superlattice nanowire arrays.
    Xue FH; Fei GT; Wu B; Cui P; Zhang LD
    J Am Chem Soc; 2005 Nov; 127(44):15348-9. PubMed ID: 16262380
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.