These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 19421571)

  • 1. Model systems for understanding absorption tuning by opsin proteins.
    Nielsen MB
    Chem Soc Rev; 2009 Apr; 38(4):913-24. PubMed ID: 19421571
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Absorption studies of neutral retinal Schiff base chromophores.
    Nielsen IB; Petersen MA; Lammich L; Nielsen MB; Andersen LH
    J Phys Chem A; 2006 Nov; 110(46):12592-6. PubMed ID: 17107108
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Model systems for the investigation of the opsin shift in bacteriorhodopsin.
    Lasogga L; Rettig W; Otto H; Wallat I; Bricks J
    J Phys Chem A; 2010 Feb; 114(5):2179-88. PubMed ID: 20085356
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photochemistry of a retinal protonated schiff-base analogue mimicking the opsin shift of bacteriorhodopsin.
    Bismuth O; Friedman N; Sheves M; Ruhman S
    J Phys Chem B; 2007 Mar; 111(9):2327-34. PubMed ID: 17298090
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Absorption of schiff-base retinal chromophores in vacuo.
    Andersen LH; Nielsen IB; Kristensen MB; El Ghazaly MO; Haacke S; Nielsen MB; Petersen MA
    J Am Chem Soc; 2005 Sep; 127(35):12347-50. PubMed ID: 16131214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel retinylidene iminium salts for defining opsin shifts: synthesis and intrinsic chromophoric properties.
    Petersen MA; Nielsen IB; Kristensen MB; Kadziola A; Lammich L; Andersen LH; Nielsen MB
    Org Biomol Chem; 2006 Apr; 4(8):1546-54. PubMed ID: 16604223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An opsin shift in rhodopsin: retinal S0-S1 excitation in protein, in solution, and in the gas phase.
    Bravaya K; Bochenkova A; Granovsky A; Nemukhin A
    J Am Chem Soc; 2007 Oct; 129(43):13035-42. PubMed ID: 17924622
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure, spectroscopy, and spectral tuning of the gas-phase retinal chromophore: the beta-ionone "handle" and alkyl group effect.
    Cembran A; Gonzalez-Luque R; Altoè P; Merchan M; Bernardi F; Olivucci M; Garavelli M
    J Phys Chem A; 2005 Jul; 109(29):6597-605. PubMed ID: 16834008
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring the molecular mechanism for color distinction in humans.
    Trabanino RJ; Vaidehi N; Goddard WA
    J Phys Chem B; 2006 Aug; 110(34):17230-9. PubMed ID: 16928022
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accurate evaluation of the absorption maxima of retinal proteins based on a hybrid QM/MM method.
    Matsuura A; Sato H; Houjou H; Saito S; Hayashi T; Sakurai M
    J Comput Chem; 2006 Nov; 27(14):1623-30. PubMed ID: 16900496
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rhodopsin regeneration is accelerated via noncovalent 11-cis retinal-opsin complex--a role of retinal binding pocket of opsin.
    Matsumoto H; Yoshizawa T
    Photochem Photobiol; 2008; 84(4):985-9. PubMed ID: 18399914
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular diversity of visual pigments in Stomatopoda (Crustacea).
    Porter ML; Bok MJ; Robinson PR; Cronin TW
    Vis Neurosci; 2009; 26(3):255-65. PubMed ID: 19534844
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The photochemical determinants of color vision: revealing how opsins tune their chromophore's absorption wavelength.
    Wang W; Geiger JH; Borhan B
    Bioessays; 2014 Jan; 36(1):65-74. PubMed ID: 24323922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decisive role of electronic polarization of the protein environment in determining the absorption maximum of halorhodopsin.
    Sakurai M; Sakata K; Saito S; Nakajima S; Inoue Y
    J Am Chem Soc; 2003 Mar; 125(10):3108-12. PubMed ID: 12617678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atomistic design of microbial opsin-based blue-shifted optogenetics tools.
    Kato HE; Kamiya M; Sugo S; Ito J; Taniguchi R; Orito A; Hirata K; Inutsuka A; Yamanaka A; Maturana AD; Ishitani R; Sudo Y; Hayashi S; Nureki O
    Nat Commun; 2015 May; 6():7177. PubMed ID: 25975962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The microbial opsin family of optogenetic tools.
    Zhang F; Vierock J; Yizhar O; Fenno LE; Tsunoda S; Kianianmomeni A; Prigge M; Berndt A; Cushman J; Polle J; Magnuson J; Hegemann P; Deisseroth K
    Cell; 2011 Dec; 147(7):1446-57. PubMed ID: 22196724
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ontogenetic changes in photoreceptor opsin gene expression in coho salmon (Oncorhynchus kisutch, Walbaum).
    Temple SE; Veldhoen KM; Phelan JT; Veldhoen NJ; Hawryshyn CW
    J Exp Biol; 2008 Dec; 211(Pt 24):3879-88. PubMed ID: 19043060
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing the sub-microsecond photodissociation dynamics in gas-phase retinal chromophores.
    Lammich L; Nielsen IB; Sand H; Svendsen A; Andersen LH
    J Phys Chem A; 2007 May; 111(21):4567-72. PubMed ID: 17477513
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An engineered opsin monomer scrambles phospholipids.
    Pandey K; Ploier B; Goren MA; Levitz J; Khelashvili G; Menon AK
    Sci Rep; 2017 Dec; 7(1):16741. PubMed ID: 29196630
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectroscopic mimicry for the protonated retinal Schiff base in vivo with modified amphiphilic clay interlayers as a possible model of opsin environment.
    Sasaki M; Fukuhara T
    Photochem Photobiol; 1997 Nov; 66(5):716-8. PubMed ID: 9383996
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.