BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1161 related articles for article (PubMed ID: 19421631)

  • 1. Theoretical studies on the reaction mechanism of oxidation of primary alcohols by Zn/Cu(ii)-phenoxyl radical catalyst.
    Cheng L; Wang J; Wang M; Wu Z
    Dalton Trans; 2009 May; (17):3286-97. PubMed ID: 19421631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic isotope effects as probes of the mechanism of galactose oxidase.
    Whittaker MM; Ballou DP; Whittaker JW
    Biochemistry; 1998 Jun; 37(23):8426-36. PubMed ID: 9622494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aerial oxidation of primary alcohols and amines catalyzed by Cu(II) complexes of 2,2'-selenobis(4,6-di-tert-butylphenol) providing [O,Se,O]-donor atoms.
    Paine TK; Weyhermüller T; Wieghardt K; Chaudhuri P
    Dalton Trans; 2004 Jul; (14):2092-101. PubMed ID: 15249944
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insights into the mechanism of methionine oxidation catalyzed by metal (Cu(2+), Zn(2+), and Fe(3+)) - amyloid beta (Abeta) peptide complexes: A computational study.
    Barman A; Taves W; Prabhakar R
    J Comput Chem; 2009 Jul; 30(9):1405-13. PubMed ID: 19037857
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Copper-zinc superoxide dismutase: theoretical insights into the catalytic mechanism.
    Pelmenschikov V; Siegbahn PE
    Inorg Chem; 2005 May; 44(9):3311-20. PubMed ID: 15847441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanistic insights from reactions between copper(II)-phenoxyl complexes and substrates with activated C-H bonds.
    Pratt RC; Stack TD
    Inorg Chem; 2005 Apr; 44(7):2367-75. PubMed ID: 15792472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ligand-derived oxidase activity. Catalytic aerial oxidation of alcohols (including methanol) by Cu(II)-diradical complexes.
    Mukherjee C; Pieper U; Bothe E; Bachler V; Bill E; Weyhermüller T; Chaudhuri P
    Inorg Chem; 2008 Oct; 47(19):8943-56. PubMed ID: 18754615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activation of the C-H bond by electrophilic attack: theoretical study of the reaction mechanism of the aerobic oxidation of alcohols to aldehydes by the Cu(bipy)(2+)/2,2,6,6-tetramethylpiperidinyl-1-oxy cocatalyst system.
    Michel C; Belanzoni P; Gamez P; Reedijk J; Baerends EJ
    Inorg Chem; 2009 Dec; 48(24):11909-20. PubMed ID: 19938864
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Marked stabilization of redox states and enhanced catalytic activity in galactose oxidase models based on transition metal S-methylisothiosemicarbazonates with -SR group in ortho position to the phenolic oxygen.
    Arion VB; Platzer S; Rapta P; Machata P; Breza M; Vegh D; Dunsch L; Telser J; Shova S; Mac Leod TC; Pombeiro AJ
    Inorg Chem; 2013 Jul; 52(13):7524-40. PubMed ID: 23758222
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of Pd(OAc)2/DMSO-catalyzed aerobic alcohol oxidation: mass-transfer-limitation effects and catalyst decomposition pathways.
    Steinhoff BA; Stahl SS
    J Am Chem Soc; 2006 Apr; 128(13):4348-55. PubMed ID: 16569011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical study of the oxidation of phenolates by the [Cu2O2(N,N'-di-tert-butylethylenediamine)2]2+ complex.
    Liu YF; Yu JG; Siegbahn PE; Blomberg MR
    Chemistry; 2013 Feb; 19(6):1942-54. PubMed ID: 23292840
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogen atom abstraction by Cu(II)- and Zn(II)-phenoxyl radical complexes, models for the active form of galactose oxidase.
    Taki M; Kumei H; Itoh S; Fukuzumi S
    J Inorg Biochem; 2000 Jan; 78(1):1-5. PubMed ID: 10714699
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidation mechanism of phenols by dicopper-dioxygen (Cu(2)/O(2)) complexes.
    Osako T; Ohkubo K; Taki M; Tachi Y; Fukuzumi S; Itoh S
    J Am Chem Soc; 2003 Sep; 125(36):11027-33. PubMed ID: 12952484
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stereoselective hydrogen abstraction by galactose oxidase.
    Minasian SG; Whittaker MM; Whittaker JW
    Biochemistry; 2004 Nov; 43(43):13683-93. PubMed ID: 15504031
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational exploration of the mechanism of alcohol oxidation by dioxygen activated with biquinolyl-containing cu complexes.
    Polestshuk PM; Magdesieva TV
    Inorg Chem; 2010 Apr; 49(7):3370-86. PubMed ID: 20184372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The dinuclear Zn(II) complex catalyzed cyclization of a series of 2-hydroxypropyl aryl phosphate RNA models: progressive change in mechanism from rate-limiting P-O bond cleavage to substrate binding.
    Bunn SE; Liu CT; Lu ZL; Neverov AA; Brown RS
    J Am Chem Soc; 2007 Dec; 129(51):16238-48. PubMed ID: 18047345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxygen activation by the noncoupled binuclear copper site in peptidylglycine alpha-hydroxylating monooxygenase. Reaction mechanism and role of the noncoupled nature of the active site.
    Chen P; Solomon EI
    J Am Chem Soc; 2004 Apr; 126(15):4991-5000. PubMed ID: 15080705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure of the oxidized active site of galactose oxidase from realistic in silico models.
    Rokhsana D; Dooley DM; Szilagyi RK
    J Am Chem Soc; 2006 Dec; 128(49):15550-1. PubMed ID: 17147339
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics of hydrogen production of methanol reformation using Cu/ZnO/Al2O3 catalyst.
    Wu HS; Chung SC
    J Comb Chem; 2007; 9(6):990-7. PubMed ID: 17900166
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanistic insight into alcohol oxidation mediated by an efficient green Cu(II)-bipy catalyst with and without TEMPO by density functional methods.
    Cheng L; Wang J; Wang M; Wu Z
    Dalton Trans; 2010 Jun; 39(22):5377-87. PubMed ID: 20454740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 59.