These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 19421720)
1. Development and NMR validation of minimal pharmacophore hypotheses for the generation of fragment libraries enriched in heparanase inhibitors. Gozalbes R; Mosulén S; Carbajo RJ; Pineda-Lucena A J Comput Aided Mol Des; 2009 Aug; 23(8):555-69. PubMed ID: 19421720 [TBL] [Abstract][Full Text] [Related]
2. Hit identification of novel heparanase inhibitors by structure- and ligand-based approaches. Gozalbes R; Mosulén S; Ortí L; Rodríguez-Díaz J; Carbajo RJ; Melnyk P; Pineda-Lucena A Bioorg Med Chem; 2013 Apr; 21(7):1944-51. PubMed ID: 23415087 [TBL] [Abstract][Full Text] [Related]
3. Energetic analysis of fragment docking and application to structure-based pharmacophore hypothesis generation. Loving K; Salam NK; Sherman W J Comput Aided Mol Des; 2009 Aug; 23(8):541-54. PubMed ID: 19421721 [TBL] [Abstract][Full Text] [Related]
4. Design of compound libraries for fragment screening. Blomberg N; Cosgrove DA; Kenny PW; Kolmodin K J Comput Aided Mol Des; 2009 Aug; 23(8):513-25. PubMed ID: 19283339 [TBL] [Abstract][Full Text] [Related]
5. Structure modeling, ligand binding, and binding affinity calculation (LR-MM-PBSA) of human heparanase for inhibition and drug design. Zhou Z; Bates M; Madura JD Proteins; 2006 Nov; 65(3):580-92. PubMed ID: 16972282 [TBL] [Abstract][Full Text] [Related]
6. Lessons for fragment library design: analysis of output from multiple screening campaigns. Chen IJ; Hubbard RE J Comput Aided Mol Des; 2009 Aug; 23(8):603-20. PubMed ID: 19495994 [TBL] [Abstract][Full Text] [Related]
7. Fragment-based lead generation: identification of seed fragments by a highly efficient fragment screening technology. Neumann L; Ritscher A; Müller G; Hafenbradl D J Comput Aided Mol Des; 2009 Aug; 23(8):501-11. PubMed ID: 19533372 [TBL] [Abstract][Full Text] [Related]
8. Computational Investigation Identified Potential Chemical Scaffolds for Heparanase as Anticancer Therapeutics. Parate S; Kumar V; Danishuddin ; Hong JC; Lee KW Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34156395 [TBL] [Abstract][Full Text] [Related]
9. Production of heparanase constructs suitable for nuclear magnetic resonance and drug discovery studies. Mosulén S; Ortí L; Bas E; Carbajo RJ; Pineda-Lucena A Biopolymers; 2011 Feb; 95(2):151-60. PubMed ID: 20882536 [TBL] [Abstract][Full Text] [Related]
10. Virtual fragment screening: an exploration of various docking and scoring protocols for fragments using Glide. Kawatkar S; Wang H; Czerminski R; Joseph-McCarthy D J Comput Aided Mol Des; 2009 Aug; 23(8):527-39. PubMed ID: 19495993 [TBL] [Abstract][Full Text] [Related]
11. Exploration of the structural requirements of HIV-protease inhibitors using pharmacophore, virtual screening and molecular docking approaches for lead identification. Islam MA; Pillay TS J Mol Graph Model; 2015 Mar; 56():20-30. PubMed ID: 25541527 [TBL] [Abstract][Full Text] [Related]
13. Advancing fragment binders to lead-like compounds using ligand and protein-based NMR spectroscopy. Maurer T Methods Enzymol; 2011; 493():469-85. PubMed ID: 21371602 [TBL] [Abstract][Full Text] [Related]
14. Pharmacophore modelling as a virtual screening tool for the discovery of small molecule protein-protein interaction inhibitors. Voet A; Zhang KY Curr Pharm Des; 2012; 18(30):4586-98. PubMed ID: 22650262 [TBL] [Abstract][Full Text] [Related]
15. Novel tumor necrosis factor-α (TNF-α) inhibitors from small molecule library screening for their therapeutic activity profiles against rheumatoid arthritis using target-driven approaches and binary QSAR models. Zaka M; Abbasi BH; Durdagi S J Biomol Struct Dyn; 2019 Jun; 37(9):2464-2476. PubMed ID: 30047845 [TBL] [Abstract][Full Text] [Related]
16. Kinetic analysis and molecular modeling of the inhibition mechanism of roneparstat (SST0001) on human heparanase. Pala D; Rivara S; Mor M; Milazzo FM; Roscilli G; Pavoni E; Giannini G Glycobiology; 2016 Jun; 26(6):640-54. PubMed ID: 26762172 [TBL] [Abstract][Full Text] [Related]
17. Antitumor activity and structure-activity relationship of heparanase inhibitors: Recent advances. Fu K; Bai Z; Chen L; Ye W; Wang M; Hu J; Liu C; Zhou W Eur J Med Chem; 2020 May; 193():112221. PubMed ID: 32222663 [TBL] [Abstract][Full Text] [Related]
18. 1H NMR spectroscopic studies establish that heparanase is a retaining glycosidase. Wilson JC; Laloo AE; Singh S; Ferro V Biochem Biophys Res Commun; 2014 Jan; 443(1):185-8. PubMed ID: 24291708 [TBL] [Abstract][Full Text] [Related]
19. Computational fragment-based drug design to explore the hydrophobic sub-pocket of the mitotic kinesin Eg5 allosteric binding site. Oguievetskaia K; Martin-Chanas L; Vorotyntsev A; Doppelt-Azeroual O; Brotel X; Adcock SA; de Brevern AG; Delfaud F; Moriaud F J Comput Aided Mol Des; 2009 Aug; 23(8):571-82. PubMed ID: 19533373 [TBL] [Abstract][Full Text] [Related]