BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 19421790)

  • 1. Does forest liming impact the enzymatic profiles of ectomycorrhizal communities through specialized fungal symbionts?
    Rineau F; Garbaye J
    Mycorrhiza; 2009 Sep; 19(7):493-500. PubMed ID: 19421790
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of liming on potential oxalate secretion and iron chelation of beech ectomycorrhizal root tips.
    Rineau F; Garbaye J
    Microb Ecol; 2010 Aug; 60(2):331-9. PubMed ID: 20577876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Liming in a beech forest results in more mineral elements stored in the mantle of Lactarius subdulcis ectomycorrhizas.
    Rineau F; Rose C; Le Thiec D; Garbaye J
    Fungal Biol; 2010; 114(11-12):1007-14. PubMed ID: 21036345
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subcellular nutrient element localization and enrichment in ecto- and arbuscular mycorrhizas of field-grown beech and ash trees indicate functional differences.
    Seven J; Polle A
    PLoS One; 2014; 9(12):e114672. PubMed ID: 25486253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Year-round monitoring of diversity and potential metabolic activity of the ectomycorrhizal community in a beech (Fagus silvatica) forest subjected to two thinning regimes.
    Buée M; Vairelles D; Garbaye J
    Mycorrhiza; 2005 Jun; 15(4):235-45. PubMed ID: 15221576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activity profiling of ectomycorrhiza communities in two forest soils using multiple enzymatic tests.
    Courty PE; Pritsch K; Schloter M; Hartmann A; Garbaye J
    New Phytol; 2005 Jul; 167(1):309-19. PubMed ID: 15948852
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigating niche partitioning of ectomycorrhizal fungi in specialized rooting zones of the monodominant leguminous tree Dicymbe corymbosa.
    Smith ME; Henkel TW; Williams GC; Aime MC; Fremier AK; Vilgalys R
    New Phytol; 2017 Jul; 215(1):443-453. PubMed ID: 28493414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative losses vs. qualitative stability of ectomycorrhizal community responses to 3 years of experimental summer drought in a beech-spruce forest.
    Nickel UT; Weikl F; Kerner R; Schäfer C; Kallenbach C; Munch JC; Pritsch K
    Glob Chang Biol; 2018 Feb; 24(2):e560-e576. PubMed ID: 29063659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzymatic activities and stable isotope patterns of ectomycorrhizal fungi in relation to phylogeny and exploration types in an afrotropical rain forest.
    Tedersoo L; Naadel T; Bahram M; Pritsch K; Buegger F; Leal M; Kõljalg U; Põldmaa K
    New Phytol; 2012 Sep; 195(4):832-843. PubMed ID: 22758212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of Heterobasidion root-rot on fine root morphology and associated fungi in Picea abies stands on peat soils.
    Gaitnieks T; Klavina D; Muiznieks I; Pennanen T; Velmala S; Vasaitis R; Menkis A
    Mycorrhiza; 2016 Jul; 26(5):465-73. PubMed ID: 26861482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fungal carbohydrate support in the ectomycorrhizal symbiosis: a review.
    Nehls U; Göhringer F; Wittulsky S; Dietz S
    Plant Biol (Stuttg); 2010 Mar; 12(2):292-301. PubMed ID: 20398236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Testing the link between community structure and function for ectomycorrhizal fungi involved in a global tripartite symbiosis.
    Walker JKM; Cohen H; Higgins LM; Kennedy PG
    New Phytol; 2014 Apr; 202(1):287-296. PubMed ID: 24320607
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ectomycorrhizal root tips in relation to site and stand characteristics in Norway spruce and Scots pine stands in boreal forests.
    Helmisaari HS; Ostonen I; Lõhmus K; Derome J; Lindroos AJ; Merilä P; Nöjd P
    Tree Physiol; 2009 Mar; 29(3):445-56. PubMed ID: 19203968
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ectomycorrhizal fungal biomass in roots and uptake of P from apatite by Pinus sylvestris seedlings growing in forest soil with and without wood ash amendment.
    Wallander H; Fossum A; Rosengren U; Jones H
    Mycorrhiza; 2005 Mar; 15(2):143-8. PubMed ID: 15221578
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Can ectomycorrhizal colonization of Pinus resinosa roots affect their decomposition?
    Koide RT; Fernandez CW; Peoples MS
    New Phytol; 2011 Jul; 191(2):508-514. PubMed ID: 21418224
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Leaf litter species identity influences biochemical composition of ectomycorrhizal fungi.
    Yang N; Butenschoen O; Rana R; Köhler L; Hertel D; Leuschner C; Scheu S; Polle A; Pena R
    Mycorrhiza; 2019 Mar; 29(2):85-96. PubMed ID: 30547252
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ectomycorrhizal fungal assemblages of Abies alba Mill. outside its native range in Poland.
    Rudawska M; Pietras M; Smutek I; Strzeliński P; Leski T
    Mycorrhiza; 2016 Jan; 26(1):57-65. PubMed ID: 26071873
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shift in fungal communities and associated enzyme activities along an age gradient of managed Pinus sylvestris stands.
    Kyaschenko J; Clemmensen KE; Hagenbo A; Karltun E; Lindahl BD
    ISME J; 2017 Apr; 11(4):863-874. PubMed ID: 28085155
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lack of host specificity leads to independent assortment of dipterocarps and ectomycorrhizal fungi across a soil fertility gradient.
    Peay KG; Russo SE; McGuire KL; Lim Z; Chan JP; Tan S; Davies SJ
    Ecol Lett; 2015 Aug; 18(8):807-816. PubMed ID: 26032408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Change in soil fungal community structure driven by a decline in ectomycorrhizal fungi following a mountain pine beetle (Dendroctonus ponderosae) outbreak.
    Pec GJ; Karst J; Taylor DL; Cigan PW; Erbilgin N; Cooke JE; Simard SW; Cahill JF
    New Phytol; 2017 Jan; 213(2):864-873. PubMed ID: 27659418
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.