BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

342 related articles for article (PubMed ID: 19422015)

  • 1. Preparation of size tunable amphiphilic poly(amino acid) nanoparticles.
    Kim H; Akagi T; Akashi M
    Macromol Biosci; 2009 Sep; 9(9):842-8. PubMed ID: 19422015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein direct delivery to dendritic cells using nanoparticles based on amphiphilic poly(amino acid) derivatives.
    Akagi T; Wang X; Uto T; Baba M; Akashi M
    Biomaterials; 2007 Aug; 28(23):3427-36. PubMed ID: 17482261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation and characterization of biodegradable nanoparticles based on poly(gamma-glutamic acid) with l-phenylalanine as a protein carrier.
    Akagi T; Kaneko T; Kida T; Akashi M
    J Control Release; 2005 Nov; 108(2-3):226-36. PubMed ID: 16125267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stabilization of polyion complex nanoparticles composed of poly(amino acid) using hydrophobic interactions.
    Akagi T; Watanabe K; Kim H; Akashi M
    Langmuir; 2010 Feb; 26(4):2406-13. PubMed ID: 20017513
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polyampholyte nanoparticles prepared by self-complexation of cationized poly(γ-glutamic acid) for protein carriers.
    Shen H; Akagi T; Akashi M
    Macromol Biosci; 2012 Aug; 12(8):1100-5. PubMed ID: 22730314
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of amphiphilic gamma-PGA-nanoparticle based tumor vaccine: potential of the nanoparticulate cytosolic protein delivery carrier.
    Yoshikawa T; Okada N; Oda A; Matsuo K; Matsuo K; Mukai Y; Yoshioka Y; Akagi T; Akashi M; Nakagawa S
    Biochem Biophys Res Commun; 2008 Feb; 366(2):408-13. PubMed ID: 18068668
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polyethyleneimine/poly-(γ-glutamic acid)/poly(lactide-co-glycolide) nanoparticles for loading and releasing antiretroviral drug.
    Kuo YC; Yu HW
    Colloids Surf B Biointerfaces; 2011 Nov; 88(1):158-64. PubMed ID: 21764569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transport of saquinavir across human brain-microvascular endothelial cells by poly(lactide-co-glycolide) nanoparticles with surface poly-(γ-glutamic acid).
    Kuo YC; Yu HW
    Int J Pharm; 2011 Sep; 416(1):365-75. PubMed ID: 21736932
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Hydrophobic Side Chains in the Induction of Immune Responses by Nanoparticle Adjuvants Consisting of Amphiphilic Poly(γ-glutamic acid).
    Shima F; Akagi T; Akashi M
    Bioconjug Chem; 2015 May; 26(5):890-8. PubMed ID: 25865284
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intranasal immunization with poly(γ-glutamic acid) nanoparticles entrapping antigenic proteins can induce potent tumor immunity.
    Matsuo K; Koizumi H; Akashi M; Nakagawa S; Fujita T; Yamamoto A; Okada N
    J Control Release; 2011 Jun; 152(2):310-6. PubMed ID: 21402114
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Size effect of amphiphilic poly(γ-glutamic acid) nanoparticles on cellular uptake and maturation of dendritic cells in vivo.
    Shima F; Uto T; Akagi T; Baba M; Akashi M
    Acta Biomater; 2013 Nov; 9(11):8894-901. PubMed ID: 23770225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-ion-crosslinked nanoparticles with pH-responsive characteristics for oral delivery of protein drugs.
    Lin YH; Sonaje K; Lin KM; Juang JH; Mi FL; Yang HW; Sung HW
    J Control Release; 2008 Dec; 132(2):141-9. PubMed ID: 18817821
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation of unimer nanoparticles by controlling the self-association of hydrophobically modified poly(amino acid)s.
    Akagi T; Piyapakorn P; Akashi M
    Langmuir; 2012 Mar; 28(11):5249-56. PubMed ID: 22385355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multifunctional conjugation of proteins on/into bio-nanoparticles prepared by amphiphilic poly(gamma-glutamic acid).
    Akagi T; Kaneko T; Kida T; Akashi M
    J Biomater Sci Polym Ed; 2006; 17(8):875-92. PubMed ID: 17024878
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Suppression of phagocytic cells in retinal disorders using amphiphilic poly(γ-glutamic acid) nanoparticles containing dexamethasone.
    Ryu M; Nakazawa T; Akagi T; Tanaka T; Watanabe R; Yasuda M; Himori N; Maruyama K; Yamashita T; Abe T; Akashi M; Nishida K
    J Control Release; 2011 Apr; 151(1):65-73. PubMed ID: 21130816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoparticles formed by complexation of poly-gamma-glutamic acid with lead ions.
    Bodnár M; Kjøniksen AL; Molnár RM; Hartmann JF; Daróczi L; Nyström B; Borbély J
    J Hazard Mater; 2008 May; 153(3):1185-92. PubMed ID: 17997032
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoparticles built by self-assembly of amphiphilic gamma-PGA can deliver antigens to antigen-presenting cells with high efficiency: a new tumor-vaccine carrier for eliciting effector T cells.
    Yoshikawa T; Okada N; Oda A; Matsuo K; Matsuo K; Kayamuro H; Ishii Y; Yoshinaga T; Akagi T; Akashi M; Nakagawa S
    Vaccine; 2008 Mar; 26(10):1303-13. PubMed ID: 18255205
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of analytical methods for evaluating the quality of dissociated and associated amphiphilic poly(γ-glutamic acid) nanoparticles.
    Ikeda M; Akagi T; Nagao M; Akashi M
    Anal Bioanal Chem; 2018 Jul; 410(18):4445-4457. PubMed ID: 29931574
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrolytic and enzymatic degradation of nanoparticles based on amphiphilic poly(gamma-glutamic acid)-graft-L-phenylalanine copolymers.
    Akagi T; Higashi M; Kaneko T; Kida T; Akashi M
    Biomacromolecules; 2006 Jan; 7(1):297-303. PubMed ID: 16398528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation of pixantrone/poly(γ-glutamic acid) nanoparticles through complex self-assembly for oral chemotherapy.
    Meng L; Ji B; Huang W; Wang D; Tong G; Su Y; Zhu X; Yan D
    Macromol Biosci; 2012 Nov; 12(11):1524-33. PubMed ID: 23008063
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.