These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 19422027)

  • 1. Characterization of raised phonation in an evoked rabbit phonation model.
    Swanson ER; Abdollahian D; Ohno T; Ge P; Zealear DL; Rousseau B
    Laryngoscope; 2009 Jul; 119(7):1439-43. PubMed ID: 19422027
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonstimulated rabbit phonation model: Cricothyroid approximation.
    Novaleski CK; Kojima T; Chang S; Luo H; Valenzuela CV; Rousseau B
    Laryngoscope; 2016 Jul; 126(7):1589-94. PubMed ID: 26971861
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of raised-intensity phonation on inflammatory mediator gene expression in normal rabbit vocal fold.
    Swanson ER; Ohno T; Abdollahian D; Garrett CG; Rousseau B
    Otolaryngol Head Neck Surg; 2010 Oct; 143(4):567-72. PubMed ID: 20879195
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Model of evoked rabbit phonation.
    Ge PJ; French LC; Ohno T; Zealear DL; Rousseau B
    Ann Otol Rhinol Laryngol; 2009 Jan; 118(1):51-5. PubMed ID: 19244964
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonlinear analyses of elicited modal, raised, and pressed rabbit phonation.
    Awan SN; Novaleski CK; Rousseau B
    J Voice; 2014 Sep; 28(5):538-47. PubMed ID: 24836360
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Raised intensity phonation compromises vocal fold epithelial barrier integrity.
    Rousseau B; Suehiro A; Echemendia N; Sivasankar M
    Laryngoscope; 2011 Feb; 121(2):346-51. PubMed ID: 21271586
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of phonation time and magnitude dose on vocal fold epithelial genes, barrier integrity, and function.
    Kojima T; Valenzuela CV; Novaleski CK; Van Deusen M; Mitchell JR; Garrett CG; Sivasankar MP; Rousseau B
    Laryngoscope; 2014 Dec; 124(12):2770-8. PubMed ID: 25073715
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glottal configuration associated with fundamental frequency and vocal register.
    Murry T; Xu JJ; Woodson GE
    J Voice; 1998 Mar; 12(1):44-9. PubMed ID: 9619978
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo measurement of vocal fold surface resistance.
    Mizuta M; Kurita T; Dillon NP; Kimball EE; Garrett CG; Sivasankar MP; Webster RJ; Rousseau B
    Laryngoscope; 2017 Oct; 127(10):E364-E370. PubMed ID: 28573762
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A computational study of the effect of false vocal folds on glottal flow and vocal fold vibration during phonation.
    Zheng X; Bielamowicz S; Luo H; Mittal R
    Ann Biomed Eng; 2009 Mar; 37(3):625-42. PubMed ID: 19142730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of phonatory characteristics using ex vivo rabbit larynges.
    Döllinger M; Kniesburges S; Berry DA; Birk V; Wendler O; Dürr S; Alexiou C; Schützenberger A
    J Acoust Soc Am; 2018 Jul; 144(1):142. PubMed ID: 30075689
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimal glottal configuration for ease of phonation.
    Lucero JC
    J Voice; 1998 Jun; 12(2):151-8. PubMed ID: 9649070
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Simple and Reproducible In Vivo Rabbit Phonation Model for Glottic Insufficiency.
    Swift WM; Churnin IT; Hamdi OA; Strumpf AM; Koehn HA; Cottler PS; Daniero JJ
    Otolaryngol Head Neck Surg; 2023 Feb; 168(2):203-209. PubMed ID: 35763368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biochemical basis of vocal fold mobilization after microflap surgery in a rabbit model.
    Mitchell JR; Kojima T; Wu H; Garrett CG; Rousseau B
    Laryngoscope; 2014 Feb; 124(2):487-93. PubMed ID: 23775575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Survival in Vivo Canine Phonation Model Without Stimulation.
    Liu K; Ge P; Sheng X; Jiang J; Qin H
    Ann Otol Rhinol Laryngol; 2018 Mar; 127(3):178-184. PubMed ID: 29298508
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electroglottographic evaluation of gender and vowel effects during modal and vocal fry phonation.
    Chen Y; Robb MP; Gilbert HR
    J Speech Lang Hear Res; 2002 Oct; 45(5):821-9. PubMed ID: 12381041
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phonation threshold pressure measurements during phonation by airflow interruption.
    Jiang J; O'Mara T; Conley D; Hanson D
    Laryngoscope; 1999 Mar; 109(3):425-32. PubMed ID: 10089970
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vocal fold bulging effects on phonation using a biophysical computer model.
    Alipour F; Scherer RC
    J Voice; 2000 Dec; 14(4):470-83. PubMed ID: 11130105
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of air flow and medial adductory compression on vocal efficiency and glottal vibration.
    Berke GS; Hanson DG; Gerratt BR; Trapp TK; Macagba C; Natividad M
    Otolaryngol Head Neck Surg; 1990 Mar; 102(3):212-8. PubMed ID: 2108407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of glottal closure configuration on vocal efficacy in young normal-speaking women.
    Schneider B; Bigenzahn W
    J Voice; 2003 Dec; 17(4):468-80. PubMed ID: 14740929
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.