These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 194223)

  • 1. Specificity of DNA basic polypeptide interactions. II+ Influence of aromatic amino acid residues investigated with agarose bound lysine copolypeptides.
    Wehling K; Arfmann HA; Seipke G; Wagner KG
    Nucleic Acids Res; 1977 Mar; 4(3):513-22. PubMed ID: 194223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Specifity of DNA-basic polypeptide interactions. Influence of neutral residues incorporated into polylysine and polyarginine.
    Wehling K; Arfmann HA; Standke KH; Wagner KG
    Nucleic Acids Res; 1975 Jun; 2(6):799-807. PubMed ID: 167352
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The aggregation of basic polypeptide residues bound to heparin.
    Stone AL; Epstein P
    Biochim Biophys Acta; 1977 Mar; 497(1):298-306. PubMed ID: 849484
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromatin models. The ionic strength dependence of model histone-DNA interactions: circular dichroism studies of lysine-leucine polypeptide-DNA complexes.
    Ong EC; Snell C; Fasman GD
    Biochemistry; 1976 Feb; 15(3):468-77. PubMed ID: 1252405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Infrared linear dichroism investigations of deoxyribonucleic acid complexes with poly(L-arginine) and poly(L-lysine).
    Liquier J; Pinot-Lafaix M; Taillandier E; Brahms J
    Biochemistry; 1975 Sep; 14(19):4191-7. PubMed ID: 170956
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contributions to selective binding of aromatic amino acid residues to tRNA(Phe).
    Bujalowski W; Porschke D
    Biophys Chem; 1988 Jun; 30(2):151-7. PubMed ID: 3416041
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Specific nicking of DNA at apurinic sites by peptides containing aromatic residues.
    Pierre J; Laval J
    J Biol Chem; 1981 Oct; 256(20):10217-20. PubMed ID: 6793576
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Specificity of DNA-basic polypeptide interactions. III. Sequential and random copolymers of lysine and aromatic amino acids.
    Seipke G; Arfmann HA; Wagner KG
    Biopolymers; 1979 Apr; 18(4):855-72. PubMed ID: 435607
    [No Abstract]   [Full Text] [Related]  

  • 9. Role of strong anchor residues in the effective binding of 10-mer and 11-mer peptides to HLA-A*2402 molecules.
    Ibe M; Moore YI; Miwa K; Kaneko Y; Yokota S; Takiguchi M
    Immunogenetics; 1996; 44(4):233-41. PubMed ID: 8753852
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aromatic amino acid-lysine copolymers. Conformation and specificity of nucleotide interaction.
    Arfmann HA; Labitzke R; Lawaczeck R; Wagner KG
    Biochimie; 1974; 56(1):53-60. PubMed ID: 4847076
    [No Abstract]   [Full Text] [Related]  

  • 11. The estimation of affinity constants for the binding of model peptides to DNA by equilibrium dialysis.
    Standke KC; Brunnert H
    Nucleic Acids Res; 1975 Oct; 2(10):1839-49. PubMed ID: 1187347
    [TBL] [Abstract][Full Text] [Related]  

  • 12. First hyperpolarizability of the natural aromatic amino acids tryptophan, tyrosine, and phenylalanine and the tripeptide lysine-tryptophan-lysine determined by hyper-Rayleigh scattering.
    Duboisset J; Matar G; Russier-Antoine I; Benichou E; Bachelier G; Jonin Ch; Ficheux D; Besson F; Brevet PF
    J Phys Chem B; 2010 Nov; 114(43):13861-5. PubMed ID: 20939548
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of lysine 55 in determining the specificity of the purine repressor for its operators through minor groove interactions.
    Glasfeld A; Koehler AN; Schumacher MA; Brennan RG
    J Mol Biol; 1999 Aug; 291(2):347-61. PubMed ID: 10438625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification and sequence composition characterization of chondroitin sulfate-binding peptides through peptide array screening.
    Butterfield KC; Caplan M; Panitch A
    Biochemistry; 2010 Feb; 49(7):1549-55. PubMed ID: 20095636
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutational investigation of the specificity determining region of the Src SH2 domain.
    Bradshaw JM; Mitaxov V; Waksman G
    J Mol Biol; 2000 Jun; 299(2):521-35. PubMed ID: 10860756
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contribution to activity of histidine-aromatic, amide-aromatic, and aromatic-aromatic interactions in the extended catalytic site of cysteine proteinases.
    Brömme D; Bonneau PR; Purisima E; Lachance P; Hajnik S; Thomas DY; Storer AC
    Biochemistry; 1996 Apr; 35(13):3970-9. PubMed ID: 8672429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stability decrease of RNA double helices by phenylalanine-, tyrosine- and tryptophane-amides. Analysis in terms of site binding and relation to melting proteins.
    Pörschke D; Jung M
    Nucleic Acids Res; 1982 Oct; 10(19):6163-76. PubMed ID: 7145717
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The recognition of nucleotides with model beta-hairpin receptors: investigation of critical contacts and nucleotide selectivity.
    Butterfield SM; Sweeney MM; Waters ML
    J Org Chem; 2005 Feb; 70(4):1105-14. PubMed ID: 15704942
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lysine-50 is a likely site for anchoring the plasminogen N-terminal peptide to lysine-binding kringles.
    An SS; Carreño C; Marti DN; Schaller J; Albericio F; Llinas M
    Protein Sci; 1998 Sep; 7(9):1960-9. PubMed ID: 9761476
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cyclic retro-inverso dipeptides with two aromatic side chains. II. Conformational analysis.
    Yamazaki T; Nunami K; Goodman M
    Biopolymers; 1991 Nov; 31(13):1513-28. PubMed ID: 1814501
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.