These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 19422429)

  • 21. Transition from embryonic to adult epidermis in reptiles occurs by the production of corneous beta-proteins.
    Alibardi L
    Int J Dev Biol; 2014; 58(10-12):829-39. PubMed ID: 26154324
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The epidermis of scales in gecko lizards contains multiple forms of beta-keratins including basic glycine-proline-serine-rich proteins.
    Toni M; Dalla Valle L; Alibardi L
    J Proteome Res; 2007 May; 6(5):1792-805. PubMed ID: 17439263
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Review: cornification, morphogenesis and evolution of feathers.
    Alibardi L
    Protoplasma; 2017 May; 254(3):1259-1281. PubMed ID: 27614891
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Convergent Evolution of Cysteine-Rich Keratins in Hard Skin Appendages of Terrestrial Vertebrates.
    Ehrlich F; Lachner J; Hermann M; Tschachler E; Eckhart L
    Mol Biol Evol; 2020 Apr; 37(4):982-993. PubMed ID: 31822906
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Immunolocalization of epidermal differentiation complex proteins reveals distinct molecular compositions of cells that control structure and mechanical properties of avian skin appendages.
    Alibardi L; Eckhart L
    J Morphol; 2021 Jun; 282(6):917-933. PubMed ID: 33830534
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dynamic evolution of the alpha (α) and beta (β) keratins has accompanied integument diversification and the adaptation of birds into novel lifestyles.
    Greenwold MJ; Bao W; Jarvis ED; Hu H; Li C; Gilbert MT; Zhang G; Sawyer RH
    BMC Evol Biol; 2014 Dec; 14():249. PubMed ID: 25496280
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Beta-keratins of differentiating epidermis of snake comprise glycine-proline-serine-rich proteins with an avian-like gene organization.
    Dalla Valle L; Nardi A; Belvedere P; Toni M; Alibardi L
    Dev Dyn; 2007 Jul; 236(7):1939-53. PubMed ID: 17576619
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cornification in reptilian epidermis occurs through the deposition of keratin-associated beta-proteins (beta-keratins) onto a scaffold of intermediate filament keratins.
    Alibardi L
    J Morphol; 2013 Feb; 274(2):175-93. PubMed ID: 23065677
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Avian skin development and the evolutionary origin of feathers.
    Sawyer RH; Knapp LW
    J Exp Zool B Mol Dev Evol; 2003 Aug; 298(1):57-72. PubMed ID: 12949769
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Beta-keratin localization in developing alligator scales and feathers in relation to the development and evolution of feathers.
    Alibardi L; Knapp LW; Sawyer RH
    J Submicrosc Cytol Pathol; 2006; 38(2-3):175-92. PubMed ID: 17784647
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Origin of feathers: Feather beta (beta) keratins are expressed in discrete epidermal cell populations of embryonic scutate scales.
    Sawyer RH; Salvatore BA; Potylicki TT; French JO; Glenn TC; Knapp LW
    J Exp Zool B Mol Dev Evol; 2003 Feb; 295(1):12-24. PubMed ID: 12548540
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Scales of non-avian reptiles and their derivatives contain corneous beta proteins coded from genes localized in the Epidermal Differentiation Complex.
    Alibardi L
    Tissue Cell; 2023 Dec; 85():102228. PubMed ID: 37793208
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Immuno-cross reactivity of transglutaminase and cornification marker proteins in the epidermis of vertebrates suggests common processes of soft cornification across species.
    Alibardi L; Toni M
    J Exp Zool B Mol Dev Evol; 2004 Nov; 302(6):526-49. PubMed ID: 15468051
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Localization and characterization of specific cornification proteins in avian epidermis.
    Alibardi L; Toni M
    Cells Tissues Organs; 2004; 178(4):204-15. PubMed ID: 15812148
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development, structure, and protein composition of reptilian claws and hypotheses of their evolution.
    Alibardi L
    Anat Rec (Hoboken); 2021 Apr; 304(4):732-757. PubMed ID: 33015957
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular structure of sauropsid β-keratins from tuatara (Sphenodon punctatus).
    Parry DAD; Fraser RDB; Alibardi L; Rutherford KM; Gemmell N
    J Struct Biol; 2019 Jul; 207(1):21-28. PubMed ID: 30978459
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Analysis of gene expression in gecko digital adhesive pads indicates significant production of cysteine- and glycine-rich beta-keratins.
    Hallahan DL; Keiper-Hrynko NM; Shang TQ; Ganzke TS; Toni M; Dalla Valle L; Alibardi L
    J Exp Zool B Mol Dev Evol; 2009 Jan; 312(1):58-73. PubMed ID: 18988255
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Keratin intermediate filament chains in tuatara (Sphenodon punctatus): A comparison of tuatara and human sequences.
    Parry DAD; Winter DJ
    J Struct Biol; 2021 Mar; 213(1):107706. PubMed ID: 33577903
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The structural basis of the filament-matrix texture in the avian/reptilian group of hard β-keratins.
    Fraser RD; Parry DA
    J Struct Biol; 2011 Feb; 173(2):391-405. PubMed ID: 20869443
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Filamentous Structure of Hard β-Keratins in the Epidermal Appendages of Birds and Reptiles.
    Fraser RD; Parry DA
    Subcell Biochem; 2017; 82():231-252. PubMed ID: 28101864
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.