These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 19422541)

  • 1. Biogenic volatile organic compounds in the Earth system.
    Laothawornkitkul J; Taylor JE; Paul ND; Hewitt CN
    New Phytol; 2009; 183(1):27-51. PubMed ID: 19422541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BVOCs and global change.
    Peñuelas J; Staudt M
    Trends Plant Sci; 2010 Mar; 15(3):133-44. PubMed ID: 20097116
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Active atmosphere-ecosystem exchange of the vast majority of detected volatile organic compounds.
    Park JH; Goldstein AH; Timkovsky J; Fares S; Weber R; Karlik J; Holzinger R
    Science; 2013 Aug; 341(6146):643-7. PubMed ID: 23929979
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biogenic volatile organic compounds and plant competition.
    Kegge W; Pierik R
    Trends Plant Sci; 2010 Mar; 15(3):126-32. PubMed ID: 20036599
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biogenic volatile emissions from the soil.
    Peñuelas J; Asensio D; Tholl D; Wenke K; Rosenkranz M; Piechulla B; Schnitzler JP
    Plant Cell Environ; 2014 Aug; 37(8):1866-91. PubMed ID: 24689847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Emission of volatile organic compounds from plants shows a biphasic pattern within an hormetic context.
    Agathokleous E; Kitao M; Calabrese EJ
    Environ Pollut; 2018 Aug; 239():318-321. PubMed ID: 29665552
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient atmospheric cleansing of oxidized organic trace gases by vegetation.
    Karl T; Harley P; Emmons L; Thornton B; Guenther A; Basu C; Turnipseed A; Jardine K
    Science; 2010 Nov; 330(6005):816-9. PubMed ID: 20966216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plant-derived Secondary Organic Material in the Air and Ecosystems.
    Holopainen JK; Kivimäenpää M; Nizkorodov SA
    Trends Plant Sci; 2017 Sep; 22(9):744-753. PubMed ID: 28789922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plant volatiles and the environment.
    Loreto F; Dicke M; Schnitzler JP; Turlings TC
    Plant Cell Environ; 2014 Aug; 37(8):1905-8. PubMed ID: 24811745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atmospheric benzenoid emissions from plants rival those from fossil fuels.
    Misztal PK; Hewitt CN; Wildt J; Blande JD; Eller AS; Fares S; Gentner DR; Gilman JB; Graus M; Greenberg J; Guenther AB; Hansel A; Harley P; Huang M; Jardine K; Karl T; Kaser L; Keutsch FN; Kiendler-Scharr A; Kleist E; Lerner BM; Li T; Mak J; Nölscher AC; Schnitzhofer R; Sinha V; Thornton B; Warneke C; Wegener F; Werner C; Williams J; Worton DR; Yassaa N; Goldstein AH
    Sci Rep; 2015 Jul; 5():12064. PubMed ID: 26165168
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biogenic volatile organic compound emissions from vegetation fires.
    Ciccioli P; Centritto M; Loreto F
    Plant Cell Environ; 2014 Aug; 37(8):1810-25. PubMed ID: 24689733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Smelling global climate change: mitigation of function for plant volatile organic compounds.
    Yuan JS; Himanen SJ; Holopainen JK; Chen F; Stewart CN
    Trends Ecol Evol; 2009 Jun; 24(6):323-31. PubMed ID: 19324451
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Abiotic stresses and induced BVOCs.
    Loreto F; Schnitzler JP
    Trends Plant Sci; 2010 Mar; 15(3):154-66. PubMed ID: 20133178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Volatile organic compounds from Italian vegetation and their interaction with ozone.
    Calfapietra C; Fares S; Loreto F
    Environ Pollut; 2009 May; 157(5):1478-86. PubMed ID: 19019511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of Biogenic Volatile Organic Compounds (BVOC) emitted by urban trees on ozone concentration in cities: a review.
    Calfapietra C; Fares S; Manes F; Morani A; Sgrigna G; Loreto F
    Environ Pollut; 2013 Dec; 183():71-80. PubMed ID: 23597803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plant functional types in Earth system models: past experiences and future directions for application of dynamic vegetation models in high-latitude ecosystems.
    Wullschleger SD; Epstein HE; Box EO; Euskirchen ES; Goswami S; Iversen CM; Kattge J; Norby RJ; van Bodegom PM; Xu X
    Ann Bot; 2014 Jul; 114(1):1-16. PubMed ID: 24793697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Volatile organic compounds in the biosphere-atmosphere system: a preface.
    Loreto F; Kesselmeier J; Schnitzler JP
    Plant Biol (Stuttg); 2008 Jan; 10(1):2-7. PubMed ID: 18211544
    [No Abstract]   [Full Text] [Related]  

  • 18. Origin of volatile organic compound emissions from subarctic tundra under global warming.
    Ghirardo A; Lindstein F; Koch K; Buegger F; Schloter M; Albert A; Michelsen A; Winkler JB; Schnitzler JP; Rinnan R
    Glob Chang Biol; 2020 Mar; 26(3):1908-1925. PubMed ID: 31957145
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catabolism of volatile organic compounds influences plant survival.
    Oikawa PY; Lerdau MT
    Trends Plant Sci; 2013 Dec; 18(12):695-703. PubMed ID: 24060580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential controls by climate and physiology over the emission rates of biogenic volatile organic compounds from mature trees in a semi-arid pine forest.
    Eller AS; Young LL; Trowbridge AM; Monson RK
    Oecologia; 2016 Feb; 180(2):345-58. PubMed ID: 26515962
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.