These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 19422553)

  • 1. Comparison of high-speed videokeratoscopy and ultrasound distance sensing for measuring the longitudinal corneal apex movements.
    Kowalska MA; Kasprzak HT; Iskander DR
    Ophthalmic Physiol Opt; 2009 May; 29(3):227-34. PubMed ID: 19422553
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectral characteristics of longitudinal corneal apex velocities and their relation to the cardiopulmonary system.
    Kasprzak HT; Iskander DR
    Eye (Lond); 2007 Sep; 21(9):1212-9. PubMed ID: 16936640
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase dependencies between longitudinal corneal apex displacement and cardiovascular signals: is the ocular pulse influenced by the electrical activity of the heart?
    Danielewska ME; Iskander DR; Kowalska M; Kasprzak HT
    Clin Exp Optom; 2012 Nov; 95(6):631-7. PubMed ID: 22827844
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics in longitudinal eye movements and corneal shape.
    Robert Iskander D; Kasprzak HT
    Ophthalmic Physiol Opt; 2006 Nov; 26(6):572-9. PubMed ID: 17040421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrasonic in vivo measurement of ocular surface expansion.
    Kowalska MA; Kasprzak HT; Iskander DR; Danielewska M; Mas D
    IEEE Trans Biomed Eng; 2011 Mar; 58(3):674-80. PubMed ID: 21177153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics of ocular surface topography.
    Zhu M; Collins MJ; Iskander DR
    Eye (Lond); 2007 May; 21(5):624-32. PubMed ID: 16628244
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Noninvasive measurement of eye retraction during blinking.
    Mas D; Domenech B; Espinosa J; Pérez J; Hernández C; Illueca C
    Opt Lett; 2010 Jun; 35(11):1884-6. PubMed ID: 20517450
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimating corneal surface topography in videokeratoscopy in the presence of strong signal interference.
    Alonso-Caneiro D; Iskander DR; Collins MJ
    IEEE Trans Biomed Eng; 2008 Oct; 55(10):2381-7. PubMed ID: 18838363
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of tear film surface quality using dynamic-area high-speed videokeratoscopy.
    Alonso-Caneiro D; Iskander DR; Collins MJ
    IEEE Trans Biomed Eng; 2009 May; 56(5):1473-81. PubMed ID: 19174338
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ocular microfluctuations and videokeratoscopy.
    Buehren T; Lee BJ; Collins MJ; Iskander DR
    Cornea; 2002 May; 21(4):346-51. PubMed ID: 11973380
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [How does central cornea thickness influence intraocular pressure during applanation and contour tonometry?].
    Schwenteck T; Knappe M; Moros I
    Klin Monbl Augenheilkd; 2012 Sep; 229(9):917-27. PubMed ID: 22972357
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Factors influencing lid pressure on the cornea.
    Collins MJ; Buehren T; Trevor T; Statham M; Hansen J; Cavanagh DA
    Eye Contact Lens; 2006 Jul; 32(4):168-73. PubMed ID: 16845261
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a novel instrument to measure the pulsatile movement of ocular tissues.
    Singh K; Dion C; Costantino S; Wajszilber M; Lesk MR; Ozaki T
    Exp Eye Res; 2010 Jul; 91(1):63-8. PubMed ID: 20398654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Applications of high-speed videokeratoscopy.
    Iskander DR; Collins MJ
    Clin Exp Optom; 2005 Jul; 88(4):223-31. PubMed ID: 16083416
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Age-related changes in corneal pulsation: ocular dicrotism.
    Danielewska ME; Iskander DR; Krzyżanowska-Berkowska P
    Optom Vis Sci; 2014 Jan; 91(1):54-9. PubMed ID: 24212188
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurement of ocular fundus pulsation in healthy subjects using a novel Fourier-domain optical coherence tomography.
    Singh K; Dion C; Wajszilber M; Ozaki T; Lesk MR; Costantino S
    Invest Ophthalmol Vis Sci; 2011 Nov; 52(12):8927-32. PubMed ID: 21969303
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proposal for a new approach to corneal biomechanics: dynamic corneal topography.
    Bonatti JA; Bechara SJ; Carricondo PC; Kara-José N
    Arq Bras Oftalmol; 2009; 72(2):264-7. PubMed ID: 19466344
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of corneal refraction in a model of a gaze tracking system.
    Villanueva A; Cabeza R
    IEEE Trans Biomed Eng; 2008 Dec; 55(12):2812-22. PubMed ID: 19126462
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tear film surface quality with soft contact lenses using dynamic-area high-speed videokeratoscopy.
    Alonso-Caneiro D; Iskander DR; Collins MJ
    Eye Contact Lens; 2009 Sep; 35(5):227-31. PubMed ID: 19657279
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of optical coherence reflectometry and ultrasound central corneal pachymetry.
    Gillis A; Zeyen T
    Bull Soc Belge Ophtalmol; 2004; (292):71-5. PubMed ID: 15253494
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.