These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 19422560)

  • 1. Retinal image quality for virtual eyes generated by a statistical model of ocular wavefront aberrations.
    Thibos LN
    Ophthalmic Physiol Opt; 2009 May; 29(3):288-91. PubMed ID: 19422560
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wave aberration of human eyes and new descriptors of image optical quality and visual performance.
    Lombardo M; Lombardo G
    J Cataract Refract Surg; 2010 Feb; 36(2):313-31. PubMed ID: 20152616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of optical quality metrics to predict subjective quality of vision after laser in situ keratomileusis.
    Bühren J; Pesudovs K; Martin T; Strenger A; Yoon G; Kohnen T
    J Cataract Refract Surg; 2009 May; 35(5):846-55. PubMed ID: 19393883
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A statistical model of the aberration structure of normal, well-corrected eyes.
    Thibos LN; Bradley A; Hong X
    Ophthalmic Physiol Opt; 2002 Sep; 22(5):427-33. PubMed ID: 12358314
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Objective refraction from monochromatic wavefront aberrations via Zernike power polynomials.
    Robert Iskander D; Davis BA; Collins MJ; Franklin R
    Ophthalmic Physiol Opt; 2007 May; 27(3):245-55. PubMed ID: 17470237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes of ocular aberrations with gaze.
    Prado P; Arines J; Bará S; Manzanera S; Mira-Agudelo A; Artal P
    Ophthalmic Physiol Opt; 2009 May; 29(3):264-71. PubMed ID: 19422557
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Custom optimization of intraocular lens asphericity.
    Wang L; Koch DD
    J Cataract Refract Surg; 2007 Oct; 33(10):1713-20. PubMed ID: 17889765
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterizing the wave aberration in eyes with keratoconus or penetrating keratoplasty using a high-dynamic range wavefront sensor.
    Pantanelli S; MacRae S; Jeong TM; Yoon G
    Ophthalmology; 2007 Nov; 114(11):2013-21. PubMed ID: 17553566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uncorrected wavefront error and visual performance during RGP wear in keratoconus.
    Marsack JD; Parker KE; Pesudovs K; Donnelly WJ; Applegate RA
    Optom Vis Sci; 2007 Jun; 84(6):463-70. PubMed ID: 17568315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Specifying and controlling the optical image on the human retina.
    Westheimer G
    Prog Retin Eye Res; 2006 Jan; 25(1):19-42. PubMed ID: 16099192
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical aberrations in the mouse eye.
    de la Cera EG; Rodríguez G; Llorente L; Schaeffel F; Marcos S
    Vision Res; 2006 Aug; 46(16):2546-53. PubMed ID: 16516259
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The statistics of refractive error maps: managing wavefront aberration analysis without Zernike polynomials.
    Iskander DR; Nam J; Thibos LN
    Ophthalmic Physiol Opt; 2009 May; 29(3):292-9. PubMed ID: 19422561
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wavefront analysis of eyes with cataracts in patients with monocular triplopia.
    Kim A; Bessho K; Okawa Y; Maeda N; Tano Y; Hirohara Y; Mihashi T; Fujikado T
    Ophthalmic Physiol Opt; 2006 Jan; 26(1):65-70. PubMed ID: 16390484
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of the retinal image quality with a Hartmann-Shack wavefront sensor and a double-pass instrument.
    Díaz-Doutón F; Benito A; Pujol J; Arjona M; Güell JL; Artal P
    Invest Ophthalmol Vis Sci; 2006 Apr; 47(4):1710-6. PubMed ID: 16565413
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Comparison of wavefront aberrations in pseudophakia with three types of intraocular lenses implantation].
    Yao K; Zhang Z; Xu W; Chen PQ; Shentu XC
    Zhonghua Yan Ke Za Zhi; 2006 May; 42(5):387-90. PubMed ID: 16762229
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical quality of the eye degraded by time-varying wavefront aberrations with tear film dynamics.
    Hirohara Y; Mihashi T; Koh S; Ninomiya S; Maeda N; Fujikado T
    Jpn J Ophthalmol; 2007; 51(4):258-64. PubMed ID: 17660985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The prediction of spherical aberration with schematic eyes.
    Liou HL; Brennan NA
    Ophthalmic Physiol Opt; 1996 Jul; 16(4):348-54. PubMed ID: 8796205
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting the optical performance of eyes implanted with IOLs to correct spherical aberration.
    Tabernero J; Piers P; Benito A; Redondo M; Artal P
    Invest Ophthalmol Vis Sci; 2006 Oct; 47(10):4651-8. PubMed ID: 17003464
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in ocular wavefront aberrations and retinal image quality with objective accommodation.
    Li YJ; Choi JA; Kim H; Yu SY; Joo CK
    J Cataract Refract Surg; 2011 May; 37(5):835-41. PubMed ID: 21420826
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wavefront aberration and its association with intraocular pressure and central corneal thickness in myopic eyes.
    Qu J; Lu F; Wu J; Wang Q; Xu C; Zhou X; He JC
    J Cataract Refract Surg; 2007 Aug; 33(8):1447-54. PubMed ID: 17662440
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.