These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 19422856)

  • 1. A minimally invasive and reversible system for chronic recordings from multiple brain sites in macaque monkeys.
    Pigarev IN; Saalmann YB; Vidyasagar TR
    J Neurosci Methods; 2009 Jul; 181(2):151-8. PubMed ID: 19422856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A reversible system for chronic recordings in macaque monkeys.
    Pigarev IN; Nothdurft HC; Kastner S
    J Neurosci Methods; 1997 Dec; 77(2):157-62. PubMed ID: 9489892
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of a head fixation device for experiments in behaving monkeys.
    Isoda M; Tsutsui K; Katsuyama N; Naganuma T; Saito N; Furusawa Y; Mushiake H; Taira M; Tanji J
    J Neurosci Methods; 2005 Feb; 141(2):277-82. PubMed ID: 15661310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Telemetric recordings of single neuron activity and visual scenes in monkeys walking in an open field.
    Lei Y; Sun N; Wilson FA; Wang X; Chen N; Yang J; Peng Y; Wang J; Tian S; Wang M; Miao Y; Zhu W; Qi H; Ma Y
    J Neurosci Methods; 2004 May; 135(1-2):35-41. PubMed ID: 15020087
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A split microdrive for simultaneous multi-electrode recordings from two brain areas in awake small animals.
    Lansink CS; Bakker M; Buster W; Lankelma J; van der Blom R; Westdorp R; Joosten RN; McNaughton BL; Pennartz CM
    J Neurosci Methods; 2007 May; 162(1-2):129-38. PubMed ID: 17307256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single neuronal recordings using surface micromachined polysilicon microelectrodes.
    Muthuswamy J; Okandan M; Jackson N
    J Neurosci Methods; 2005 Mar; 142(1):45-54. PubMed ID: 15652616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An acute method for multielectrode recording from the interior of sulci and other deep brain areas.
    Purushothaman G; Scott BB; Bradley DC
    J Neurosci Methods; 2006 May; 153(1):86-94. PubMed ID: 16316688
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Refined methodology for implantation of a head fixation device and chronic recording chambers in non-human primates.
    Lanz F; Lanz X; Scherly A; Moret V; Gaillard A; Gruner P; Hoogewoud HM; Belhaj-Saif A; Loquet G; Rouiller EM
    J Neurosci Methods; 2013 Oct; 219(2):262-70. PubMed ID: 23933327
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward a comparison of microelectrodes for acute and chronic recordings.
    Ward MP; Rajdev P; Ellison C; Irazoqui PP
    Brain Res; 2009 Jul; 1282():183-200. PubMed ID: 19486899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-resolution three-dimensional microelectrode brain mapping using stereo microfocal X-ray imaging.
    Cox DD; Papanastassiou AM; Oreper D; Andken BB; Dicarlo JJ
    J Neurophysiol; 2008 Nov; 100(5):2966-76. PubMed ID: 18815345
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Large-Scale Semi-Chronic Microdrive Recording System for Non-Human Primates.
    Dotson NM; Hoffman SJ; Goodell B; Gray CM
    Neuron; 2017 Nov; 96(4):769-782.e2. PubMed ID: 29107523
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A minimally invasive displacement sensor for measuring brain micromotion in 3D with nanometer scale resolution.
    Vähäsöyrinki M; Tuukkanen T; Sorvoja H; Pudas M
    J Neurosci Methods; 2009 Jun; 180(2):290-5. PubMed ID: 19379772
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A simple micromanipulator for multiple uses in freely moving rats: electrophysiology, voltammetry, and simultaneous intracerebral infusions.
    Rebec GV; Langley PE; Pierce RC; Wang Z; Heidenreich BA
    J Neurosci Methods; 1993 Apr; 47(1-2):53-9. PubMed ID: 8321014
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-density multielectrode array with independently maneuverable electrodes and silicone oil fluid isolation system for chronic recording from macaque monkey.
    Miyakawa N; Katsumata N; Blake DT; Merzenich MM; Tanifuji M
    J Neurosci Methods; 2012 Oct; 211(1):114-24. PubMed ID: 22939944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Lantern: an ultra-light micro-drive for multi-tetrode recordings in mice and other small animals.
    Battaglia FP; Kalenscher T; Cabral H; Winkel J; Bos J; Manuputy R; van Lieshout T; Pinkse F; Beukers H; Pennartz C
    J Neurosci Methods; 2009 Apr; 178(2):291-300. PubMed ID: 19152807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Techniques for long-term multisite neuronal ensemble recordings in behaving animals.
    Kralik JD; Dimitrov DF; Krupa DJ; Katz DB; Cohen D; Nicolelis MA
    Methods; 2001 Oct; 25(2):121-50. PubMed ID: 11812202
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new stabilizing craniotomy-duratomy technique for single-cell anatomo-electrophysiological exploration of living intact brain networks.
    Pinault D
    J Neurosci Methods; 2005 Feb; 141(2):231-42. PubMed ID: 15661305
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neurophysiological recordings in freely moving monkeys.
    Sun NL; Lei YL; Kim BH; Ryou JW; Ma YY; Wilson FA
    Methods; 2006 Mar; 38(3):202-9. PubMed ID: 16530628
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low profile halo head fixation in non-human primates.
    Azimi K; Prescott IA; Marino RA; Winterborn A; Levy R
    J Neurosci Methods; 2016 Aug; 268():23-30. PubMed ID: 27132241
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Independent positioning of microelectrodes for multisite recordings in vitro.
    Albus K; Sinske K; Heinemann U
    J Neurosci Methods; 2009 Jan; 176(2):182-5. PubMed ID: 18822315
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.