These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 19423326)

  • 1. Simple spectroscopic method for titration of binding sites in molecularly imprinted nanogels with hydrolase activity.
    Pasetto P; Flavin K; Resmini M
    Biosens Bioelectron; 2009 Nov; 25(3):572-8. PubMed ID: 19423326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional mimicry of carboxypeptidase A by a combination of transition state stabilization and a defined orientation of catalytic moieties in molecularly imprinted polymers.
    Liu JQ; Wulff G
    J Am Chem Soc; 2008 Jun; 130(25):8044-54. PubMed ID: 18510322
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of biomimetic catalysts by molecular imprinting in synthetic polymers: the role of transition state stabilization.
    Wulff G; Liu J
    Acc Chem Res; 2012 Feb; 45(2):239-47. PubMed ID: 21967389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Supported imprinted nanospheres for the selective recognition of cholesterol.
    Ciardelli G; Borrelli C; Silvestri D; Cristallini C; Barbani N; Giusti P
    Biosens Bioelectron; 2006 Jun; 21(12):2329-38. PubMed ID: 16574398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional mimicry of the active site of carboxypeptidase a by a molecular imprinting strategy: cooperativity of an amidinium and a copper ion in a transition-state imprinted cavity giving rise to high catalytic activity.
    Liu JQ; Wulff G
    J Am Chem Soc; 2004 Jun; 126(24):7452-3. PubMed ID: 15198587
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of molecularly imprinted polymers for the binding of nitrofurantoin.
    Athikomrattanakul U; Katterle M; Gajovic-Eichelmann N; Scheller FW
    Biosens Bioelectron; 2009 Sep; 25(1):82-7. PubMed ID: 19559593
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The first example of molecularly imprinted nanogels with aldolase type I activity.
    Carboni D; Flavin K; Servant A; Gouverneur V; Resmini M
    Chemistry; 2008; 14(23):7059-65. PubMed ID: 18600827
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of monofunctional and multifunctional monomers in phosphate binding molecularly imprinted polymers.
    Wu X; Goswami K; Shimizu KD
    J Mol Recognit; 2008; 21(6):410-8. PubMed ID: 18698665
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Semi-covalent surface molecular imprinting of polymers by one-stage mini-emulsion polymerization: glucopyranoside as a model analyte.
    Curcio P; Zandanel C; Wagner A; Mioskowski C; Baati R
    Macromol Biosci; 2009 Jun; 9(6):596-604. PubMed ID: 19434676
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Binding site characteristics of 17beta-estradiol imprinted polymers.
    Wei S; Mizaikoff B
    Biosens Bioelectron; 2007 Sep; 23(2):201-9. PubMed ID: 17540554
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aqueous batch rebinding and selectivity studies on sucrose imprinted polymers.
    Kirk C; Jensen M; Kjaer CN; Smedskjaer MM; Larsen KL; Wimmer R; Yu D
    Biosens Bioelectron; 2009 Nov; 25(3):623-8. PubMed ID: 19223166
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of molecularly imprinted polymers as tailored templates for the solid-state [2+2] photodimerization.
    Wu X; Shimizu KD
    Biosens Bioelectron; 2009 Nov; 25(3):640-6. PubMed ID: 19269158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new enzyme model for enantioselective esterases based on molecularly imprinted polymers.
    Emgenbroich M; Wulff G
    Chemistry; 2003 Sep; 9(17):4106-17. PubMed ID: 12953196
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Spectroscopy and XPS studies on molecular recognition of a molecularly imprinted cotinine-specific polymer].
    Yang J; Zhu XL; Su QD; Cai JB; Hu Y; Gao Y
    Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Jun; 27(6):1152-5. PubMed ID: 17763780
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Grafting of molecularly imprinted polymers on iniferter-modified carbon nanotube.
    Lee HY; Kim BS
    Biosens Bioelectron; 2009 Nov; 25(3):587-91. PubMed ID: 19394212
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of an enzyme-like imprinted polymer with the substrate as the template, and its catalytic properties under aqueous conditions.
    Cheng Z; Zhang L; Li Y
    Chemistry; 2004 Jul; 10(14):3555-61. PubMed ID: 15252803
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and dynamics of monomer-template complexation: an explanation for molecularly imprinted polymer recognition site heterogeneity.
    Karlsson BC; O'Mahony J; Karlsson JG; Bengtsson H; Eriksson LA; Nicholls IA
    J Am Chem Soc; 2009 Sep; 131(37):13297-304. PubMed ID: 19708659
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of imprinting parameters and their recognition nature for quinine-molecularly imprinted polymers.
    He JF; Zhu QH; Deng QY
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Aug; 67(5):1297-305. PubMed ID: 17142092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthetic strategies for the generation of molecularly imprinted organic polymers.
    Mayes AG; Whitcombe MJ
    Adv Drug Deliv Rev; 2005 Dec; 57(12):1742-78. PubMed ID: 16225958
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecularly imprinted polymer films for reflectometric interference spectroscopic sensors.
    Belmont AS; Jaeger S; Knopp D; Niessner R; Gauglitz G; Haupt K
    Biosens Bioelectron; 2007 Jun; 22(12):3267-72. PubMed ID: 17368014
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.