These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 19423425)

  • 21. Model-based characterization platform of fiber optic extended-wavelength diffuse reflectance spectroscopy for identification of neurovascular bundles.
    Sun Y; Dumont AP; Arefin MS; Patil CA
    J Biomed Opt; 2022 Sep; 27(9):. PubMed ID: 36088529
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluation of a fiberoptic-based system for measurement of optical properties in highly attenuating turbid media.
    Sharma D; Agrawal A; Matchette LS; Pfefer TJ
    Biomed Eng Online; 2006 Aug; 5():49. PubMed ID: 16928274
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Wavelength optimization for quantitative spectral imaging of breast tumor margins.
    Lo JY; Brown JQ; Dhar S; Yu B; Palmer GM; Jokerst NM; Ramanujam N
    PLoS One; 2013; 8(4):e61767. PubMed ID: 23613927
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Study on the Determination System of Tissue Optical Properties Based on Diffuse Reflectance Spectrum].
    Li CX; Sun Z; Han L; Zhao HJ; Xu KX
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 May; 36(5):1532-6. PubMed ID: 30001058
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quantification of fluorophore concentration in tissue-simulating media by fluorescence measurements with a single optical fiber.
    Diamond KR; Patterson MS; Farrell TJ
    Appl Opt; 2003 May; 42(13):2436-42. PubMed ID: 12737480
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Experimental validation of a spectroscopic Monte Carlo light transport simulation technique and Raman scattering depth sensing analysis in biological tissue.
    Akbarzadeh A; Edjlali E; Sheehy G; Selb J; Agarwal R; Weber J; Leblond F
    J Biomed Opt; 2020 Oct; 25(10):. PubMed ID: 33111509
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Recovery of hemoglobin oxygen saturation and intrinsic fluorescence with a forward-adjoint model.
    Finlay JC; Foster TH
    Appl Opt; 2005 Apr; 44(10):1917-33. PubMed ID: 15813528
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Determination of the optical properties of turbid media from a single Monte Carlo simulation.
    Kienle A; Patterson MS
    Phys Med Biol; 1996 Oct; 41(10):2221-7. PubMed ID: 8912392
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Diffuse reflectance spectroscopy characterization of hemoglobin and intralipid solutions: in vitro measurements with continuous variation of absorption and scattering.
    Hernández SE; Rodríguez VD; Pérez J; Martín FA; Castellano MA; Gonzalez-Mora JL
    J Biomed Opt; 2009; 14(3):034026. PubMed ID: 19566319
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Monitoring of tissue optical properties during thermal coagulation of ex vivo tissues.
    Nagarajan VK; Yu B
    Lasers Surg Med; 2016 Sep; 48(7):686-94. PubMed ID: 27250022
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Scaling method for fast Monte Carlo simulation of diffuse reflectance spectra from multilayered turbid media.
    Liu Q; Ramanujam N
    J Opt Soc Am A Opt Image Sci Vis; 2007 Apr; 24(4):1011-25. PubMed ID: 17361287
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Portable optical fiber probe-based spectroscopic scanner for rapid cancer diagnosis: a new tool for intraoperative margin assessment.
    Lue N; Kang JW; Yu CC; Barman I; Dingari NC; Feld MS; Dasari RR; Fitzmaurice M
    PLoS One; 2012; 7(1):e30887. PubMed ID: 22303465
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Monte Carlo analysis of single fiber reflectance spectroscopy: photon path length and sampling depth.
    Kanick SC; Robinson DJ; Sterenborg HJ; Amelink A
    Phys Med Biol; 2009 Nov; 54(22):6991-7008. PubMed ID: 19887712
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Machine learning for direct oxygen saturation and hemoglobin concentration assessment using diffuse reflectance spectroscopy.
    Fredriksson I; Larsson M; Strömberg T
    J Biomed Opt; 2020 Nov; 25(11):. PubMed ID: 33205635
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spectral filtering modulation method for estimation of hemoglobin concentration and oxygenation based on a single fluorescence emission spectrum in tissue phantoms.
    Liu Q; Vo-Dinh T
    Med Phys; 2009 Oct; 36(10):4819-29. PubMed ID: 19928112
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Accuracy of retrieving optical properties from liquid tissue phantoms using a single integrating sphere.
    Vincely VD; Vishwanath K
    Appl Opt; 2022 Jan; 61(2):375-385. PubMed ID: 35200872
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Diffuse reflectance spectroscopy for optical characterizations of orthotopic head and neck cancer models
    Saha PS; Yan J; Zhu C
    Biomed Opt Express; 2024 Jul; 15(7):4176-4189. PubMed ID: 39022549
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluation of blood oxygen saturation in vivo from diffuse reflectance spectra.
    Stratonnikov AA; Loschenov VB
    J Biomed Opt; 2001 Oct; 6(4):457-67. PubMed ID: 11728206
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hemoglobin parameters from diffuse reflectance data.
    Mourant JR; Marina OC; Hebert TM; Kaur G; Smith HO
    J Biomed Opt; 2014 Mar; 19(3):37004. PubMed ID: 24671524
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Steady-state spectroscopy on complementary tissue structural and functional information extraction].
    Liu CB; Song JB; Long T; Zhang ZX
    Guang Pu Xue Yu Guang Pu Fen Xi; 2012 Oct; 32(10):2714-7. PubMed ID: 23285872
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.