BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

496 related articles for article (PubMed ID: 19423700)

  • 1. Methods and prospects for using molecular data in captive breeding programs: an empirical example using parma wallabies (Macropus parma).
    Ivy JA; Miller A; Lacy RC; Dewoody JA
    J Hered; 2009; 100(4):441-54. PubMed ID: 19423700
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ex situ population management in the absence of pedigree information.
    Russello MA; Amato G
    Mol Ecol; 2004 Sep; 13(9):2829-40. PubMed ID: 15315693
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic approaches refine ex situ lowland tapir (Tapirus terrestris) conservation.
    Gonçalves da Silva A; Lalonde DR; Quse V; Shoemaker A; Russello MA
    J Hered; 2010; 101(5):581-90. PubMed ID: 20484384
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinship-based management strategies for captive breeding programs when pedigrees are unknown or uncertain.
    Putnam AS; Ivy JA
    J Hered; 2014; 105(3):303-11. PubMed ID: 24143031
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic evaluation of the Association of Zoos and Aquariums Matschie's tree kangaroo (Dendrolagus matschiei) captive breeding program.
    McGreevy TJ; Dabek L; Husband TP
    Zoo Biol; 2011; 30(6):636-46. PubMed ID: 22147592
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluating the performance of captive breeding techniques for conservation hatcheries: a case study of the delta smelt captive breeding program.
    Fisch KM; Ivy JA; Burton RS; May B
    J Hered; 2013; 104(1):92-104. PubMed ID: 23125405
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of cytonuclear genomic dissociation in the North American captive African elephant collection.
    Lei R; Brenneman RA; Schmitt DL; Louis EE
    J Hered; 2009; 100(6):675-80. PubMed ID: 19656817
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parentage and relatedness in captive and natural populations of the Roseate Spoonbill (Aves: Ciconiiformes) based on microsatellite data.
    Miño CI; Sawyer GM; Benjamin RC; Del Lama SN
    J Exp Zool A Ecol Genet Physiol; 2009 Jul; 311(6):453-64. PubMed ID: 19424995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Captive breeding and the reintroduction of Mexican and red wolves.
    Hedrick PW; Fredrickson RJ
    Mol Ecol; 2008 Jan; 17(1):344-50. PubMed ID: 18173506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The genealogy and genetic viability of reintroduced Yellowstone grey wolves.
    Vonholdt BM; Stahler DR; Smith DW; Earl DA; Pollinger JP; Wayne RK
    Mol Ecol; 2008 Jan; 17(1):252-74. PubMed ID: 17877715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Retrospective investigation of captive red wolf reproductive success in relation to age and inbreeding.
    Lockyear KM; Waddell WT; Goodrowe KL; MacDonald SE
    Zoo Biol; 2009 May; 28(3):214-29. PubMed ID: 19504595
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unravelling first-generation pedigrees in wild endangered salmon populations using molecular genetic markers.
    Herbinger CM; O'reilly PT; Verspoor E
    Mol Ecol; 2006 Jul; 15(8):2261-75. PubMed ID: 16780439
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Subspecies genetic assignments of worldwide captive tigers increase conservation value of captive populations.
    Luo SJ; Johnson WE; Martenson J; Antunes A; Martelli P; Uphyrkina O; Traylor-Holzer K; Smith JL; O'Brien SJ
    Curr Biol; 2008 Apr; 18(8):592-6. PubMed ID: 18424146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic structure analysis of a highly inbred captive population of the African antelope Addax nasomaculatus. Conservation and management implications.
    Armstrong E; Leizagoyen C; Martínez AM; González S; Delgado JV; Postiglioni A
    Zoo Biol; 2011; 30(4):399-411. PubMed ID: 20853411
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fine-scale spatial genetic correlation analyses reveal strong female philopatry within a brush-tailed rock-wallaby colony in southeast Queensland.
    Hazlitt SL; Eldridge MD; Goldizen AW
    Mol Ecol; 2004 Dec; 13(12):3621-32. PubMed ID: 15548278
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inbreeding and loss of genetic variation in a reintroduced population of Mauritius Kestrel.
    Ewing SR; Nager RG; Nicoll MA; Aumjaud A; Jones CG; Keller LF
    Conserv Biol; 2008 Apr; 22(2):395-404. PubMed ID: 18294297
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Founder effects, inbreeding, and loss of genetic diversity in four avian reintroduction programs.
    Jamieson IG
    Conserv Biol; 2011 Feb; 25(1):115-23. PubMed ID: 20825445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic diversity in captive and wild Matschie's tree kangaroo (Dendrolagus matschiei) from Huon Peninsula, Papua New Guinea, based on mtDNA control region sequences.
    McGreevy TJ; Dabek L; Gomez-Chiarri M; Husband TP
    Zoo Biol; 2009 May; 28(3):183-96. PubMed ID: 19504594
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of strategies for selecting breeding pairs to maximize genetic diversity retention in managed populations.
    Ivy JA; Lacy RC
    J Hered; 2012; 103(2):186-96. PubMed ID: 22246407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large-scale genetic survey provides insights into the captive management and reintroduction of giant pandas.
    Shan L; Hu Y; Zhu L; Yan L; Wang C; Li D; Jin X; Zhang C; Wei F
    Mol Biol Evol; 2014 Oct; 31(10):2663-71. PubMed ID: 25015646
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.