BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 19423750)

  • 1. Uptake and fate of ganglioside GD3 in human intestinal Caco-2 cells.
    Schnabl KL; Larcelet M; Thomson AB; Clandinin MT
    Am J Physiol Gastrointest Liver Physiol; 2009 Jul; 297(1):G52-9. PubMed ID: 19423750
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ganglioside composition of differentiated Caco-2 cells resembles human colostrum and neonatal rat intestine.
    Schnabl KL; Field C; Clandinin MT
    Br J Nutr; 2009 Mar; 101(5):694-700. PubMed ID: 18713482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diet-induced changes in membrane gangliosides in rat intestinal mucosa, plasma and brain.
    Park EJ; Suh M; Ramanujam K; Steiner K; Begg D; Clandinin MT
    J Pediatr Gastroenterol Nutr; 2005 Apr; 40(4):487-95. PubMed ID: 15795600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hepcidin inhibits apical iron uptake in intestinal cells.
    Mena NP; Esparza A; Tapia V; Valdés P; Núñez MT
    Am J Physiol Gastrointest Liver Physiol; 2008 Jan; 294(1):G192-8. PubMed ID: 17962361
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vesicular transport and apotransferrin in intestinal iron absorption, as shown in the Caco-2 cell model.
    Moriya M; Linder MC
    Am J Physiol Gastrointest Liver Physiol; 2006 Feb; 290(2):G301-9. PubMed ID: 16179601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glutamine preserves protein synthesis and paracellular permeability in Caco-2 cells submitted to "luminal fasting".
    Le Bacquer O; Laboisse C; Darmaun D
    Am J Physiol Gastrointest Liver Physiol; 2003 Jul; 285(1):G128-36. PubMed ID: 12799310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Iron-zinc interaction during uptake in human intestinal Caco-2 cell line: kinetic analyses and possible mechanism.
    Iyengar V; Pullakhandam R; Nair KM
    Indian J Biochem Biophys; 2009 Aug; 46(4):299-306. PubMed ID: 19788062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro approaches to evaluate palytoxin-induced toxicity and cell death in intestinal cells.
    Valverde I; Lago J; Vieites JM; Cabado AG
    J Appl Toxicol; 2008 Apr; 28(3):294-302. PubMed ID: 17604342
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Asymmetrical regulation of scavenger receptor class B type I by apical and basolateral stimuli using Caco-2 cells.
    Peretti N; Delvin E; Sinnett D; Marcil V; Garofalo C; Levy E
    J Cell Biochem; 2007 Feb; 100(2):421-33. PubMed ID: 16927335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insulin internalizes GLUT2 in the enterocytes of healthy but not insulin-resistant mice.
    Tobin V; Le Gall M; Fioramonti X; Stolarczyk E; Blazquez AG; Klein C; Prigent M; Serradas P; Cuif MH; Magnan C; Leturque A; Brot-Laroche E
    Diabetes; 2008 Mar; 57(3):555-62. PubMed ID: 18057092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sugar sensing by enterocytes combines polarity, membrane bound detectors and sugar metabolism.
    Le Gall M; Tobin V; Stolarczyk E; Dalet V; Leturque A; Brot-Laroche E
    J Cell Physiol; 2007 Dec; 213(3):834-43. PubMed ID: 17786952
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chromium nanoparticle exhibits higher absorption efficiency than chromium picolinate and chromium chloride in Caco-2 cell monolayers.
    Zha LY; Xu ZR; Wang MQ; Gu LY
    J Anim Physiol Anim Nutr (Berl); 2008 Apr; 92(2):131-40. PubMed ID: 18336409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impaired uptake of beta-carotene by Caco-2 human intestinal cells in the presence of iron.
    Bengtsson A; Scheers N; Andlid T; Alminger ML; Sandberg AS; Svanberg U
    Int J Food Sci Nutr; 2009; 60 Suppl 5():125-35. PubMed ID: 19194811
    [TBL] [Abstract][Full Text] [Related]  

  • 14. S-adenosyl-L-methionine: transcellular transport and uptake by Caco-2 cells and hepatocytes.
    McMillan JM; Walle UK; Walle T
    J Pharm Pharmacol; 2005 May; 57(5):599-605. PubMed ID: 15901349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Zolmitriptan uptake by human intestinal epithelial Caco-2 cells.
    Yu LS; Zhao NP; Yao TW; Zeng S
    Pharmazie; 2006 Oct; 61(10):862-5. PubMed ID: 17069426
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of copper absorption by copper availability in the Caco-2 cell intestinal model.
    Zerounian NR; Redekosky C; Malpe R; Linder MC
    Am J Physiol Gastrointest Liver Physiol; 2003 May; 284(5):G739-47. PubMed ID: 12540371
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differentiation stage-dependent preferred uptake of basolateral (systemic) glutamine into Caco-2 cells results in its accumulation in proteins with a role in cell-cell interaction.
    Lenaerts K; Mariman E; Bouwman F; Renes J
    FEBS J; 2005 Jul; 272(13):3350-64. PubMed ID: 15978041
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differentiation-dependent redistribution of heparan sulfate in epithelial intestinal Caco-2 cells leads to basolateral entry of cytomegalovirus.
    Esclatine A; Bellon A; Michelson S; Servin AL; Quéro AM; Géniteau-Legendre M
    Virology; 2001 Oct; 289(1):23-33. PubMed ID: 11601914
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transport of valproate at intestinal epithelial (Caco-2) and brain endothelial (RBE4) cells: mechanism and substrate specificity.
    Fischer W; Praetor K; Metzner L; Neubert RH; Brandsch M
    Eur J Pharm Biopharm; 2008 Oct; 70(2):486-92. PubMed ID: 18577448
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parameters influencing intestinal epithelial permeability and microparticle uptake in vitro.
    Moyes SM; Smyth SH; Shipman A; Long S; Morris JF; Carr KE
    Int J Pharm; 2007 Jun; 337(1-2):133-41. PubMed ID: 17306478
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.