BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

773 related articles for article (PubMed ID: 19423935)

  • 1. Crystalline nanotubes of gamma-AlOOH and gamma-Al2O3: hydrothermal synthesis, formation mechanism and catalytic performance.
    Lu CL; Lv JG; Xu L; Guo XF; Hou WH; Hu Y; Huang H
    Nanotechnology; 2009 May; 20(21):215604. PubMed ID: 19423935
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalytic growth of single-crystalline V(2)O(5) nanowire arrays.
    Velazquez JM; Banerjee S
    Small; 2009 May; 5(9):1025-9. PubMed ID: 19235798
    [No Abstract]   [Full Text] [Related]  

  • 3. High-aspect ratio nano-noodles of alumina and titania.
    Friedman AL; Panaitescu E; Richter C; Menon L
    J Nanosci Nanotechnol; 2008 Nov; 8(11):5864-8. PubMed ID: 19198318
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microwave-hydrothermal synthesis and characterization of nanostructured copper substituted ZnM2O4 (M = Al, Ga) spinels as precursors for thermally stable Cu catalysts.
    Conrad F; Massue C; Kühl S; Kunkes E; Girgsdies F; Kasatkin I; Zhang B; Friedrich M; Luo Y; Armbrüster M; Patzke GR; Behrens M
    Nanoscale; 2012 Mar; 4(6):2018-28. PubMed ID: 22327266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure study of single crystal BaTiO3 nanotube arrays produced by the hydrothermal method.
    Yang Y; Wang X; Sun C; Li L
    Nanotechnology; 2009 Feb; 20(5):055709. PubMed ID: 19417368
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-organized TiO2 nanotube layers as highly efficient photocatalysts.
    Macak JM; Zlamal M; Krysa J; Schmuki P
    Small; 2007 Feb; 3(2):300-4. PubMed ID: 17230591
    [No Abstract]   [Full Text] [Related]  

  • 7. Fabrication and magnetic functionalization of cylindrical porous anodic alumina.
    Sanz R; Hernández-Vélez M; Pirota KR; Baldonedo JL; Vázquez M
    Small; 2007 Mar; 3(3):434-7. PubMed ID: 17285645
    [No Abstract]   [Full Text] [Related]  

  • 8. Large-scale synthesis of titanate and anatase tubular hierarchitectures.
    Wu C; Lei L; Zhu X; Yang J; Xie Y
    Small; 2007 Sep; 3(9):1518-22. PubMed ID: 17668432
    [No Abstract]   [Full Text] [Related]  

  • 9. Large-scale, hot-filament-assisted synthesis of tungsten oxide and related transition metal oxide nanowires.
    Thangala J; Vaddiraju S; Bogale R; Thurman R; Powers T; Deb B; Sunkara MK
    Small; 2007 May; 3(5):890-6. PubMed ID: 17415736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of hollow mesoporous silica nanoworm with two holes at the terminals.
    Li B; Pei X; Wang S; Chen Y; Zhang M; Li Y; Yang Y
    Nanotechnology; 2010 Jan; 21(2):025601. PubMed ID: 19955619
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The temperature-controlled growth of In2O3 nanowires, nanotowers and ultra-long layered nanorods.
    Singh N; Zhang T; Lee PS
    Nanotechnology; 2009 May; 20(19):195605. PubMed ID: 19420644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photocatalysis using GaN nanowires.
    Jung HS; Hong YJ; Li Y; Cho J; Kim YJ; Yi GC
    ACS Nano; 2008 Apr; 2(4):637-42. PubMed ID: 19206593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of PbS quantum dot doped TiO2 nanotubes.
    Ratanatawanate C; Xiong C; Balkus KJ
    ACS Nano; 2008 Aug; 2(8):1682-8. PubMed ID: 19206372
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation of photocatalytic anatase nanowire films by in situ oxidation of titanium plate.
    Wu Y; Long M; Cai W; Dai S; Chen C; Wu D; Bai J
    Nanotechnology; 2009 May; 20(18):185703. PubMed ID: 19420626
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A thermal study on the structural changes of bimetallic ZrO2-modified TiO2 nanotubes synthesized using supercritical CO2.
    Lucky RA; Charpentier PA
    Nanotechnology; 2009 May; 20(19):195601. PubMed ID: 19420640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrothermal synthesis of ZnO nanorods: a statistical determination of the significant parameters in view of reducing the diameter.
    Elen K; Van den Rul H; Hardy A; Van Bael MK; D'Haen J; Peeters R; Franco D; Mullens J
    Nanotechnology; 2009 Feb; 20(5):055608. PubMed ID: 19417355
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlled formation and resistivity scaling of nickel silicide nanolines.
    Li B; Luo Z; Shi L; Zhou J; Rabenberg L; Ho PS; Allen RA; Cresswell MW
    Nanotechnology; 2009 Feb; 20(8):085304. PubMed ID: 19417448
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Room temperature synthesis of K2Mo3O10x3H2O nanowires in minutes.
    Gong W; Xue J; Zhang K; Wu Z; Wei D; Chen Q; Pan H; Xu S
    Nanotechnology; 2009 May; 20(21):215603. PubMed ID: 19423934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surfactant- and temperature-controlled CdS nanowire formation.
    Kang CC; Lai CW; Peng HC; Shyue JJ; Chou PT
    Small; 2007 Nov; 3(11):1882-5. PubMed ID: 17935078
    [No Abstract]   [Full Text] [Related]  

  • 20. A simple route to growth of silicon nanowires.
    Pan H; Ni Z; Poh C; Feng YP; Lin J; Shen Z
    J Nanosci Nanotechnol; 2008 Nov; 8(11):5787-90. PubMed ID: 19198306
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 39.