These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 19424367)

  • 21. Spherical and sub-wavelength longitudinal magnetization generated by 4π tightly focusing radially polarized vortex beams.
    Nie Z; Ding W; Li D; Zhang X; Wang Y; Song Y
    Opt Express; 2015 Jan; 23(2):690-701. PubMed ID: 25835829
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Intrinsic optical torque of cylindrical vector beams on Rayleigh absorptive spherical particles.
    Li M; Yan S; Yao B; Lei M; Yang Y; Min J; Dan D
    J Opt Soc Am A Opt Image Sci Vis; 2014 Aug; 31(8):1710-5. PubMed ID: 25121525
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Resonant harmonic generation in AlGaAs nanoantennas probed by cylindrical vector beams.
    Camacho-Morales R; Bautista G; Zang X; Xu L; Turquet L; Miroshnichenko A; Tan HH; Lamprianidis A; Rahmani M; Jagadish C; Neshev DN; Kauranen M
    Nanoscale; 2019 Jan; 11(4):1745-1753. PubMed ID: 30623948
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of radial polarization and apodization on spot size under tight focusing conditions.
    Lerman GM; Levy U
    Opt Express; 2008 Mar; 16(7):4567-81. PubMed ID: 18542554
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Focus shaping of the radially polarized Laguerre-Gaussian-correlated Schell-model vortex beams.
    Xu HF; Zhou Y; Wu HW; Chen HJ; Sheng ZQ; Qu J
    Opt Express; 2018 Aug; 26(16):20076-20088. PubMed ID: 30119323
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Generation of super-length optical needle by focusing hybridly polarized vector beams through a dielectric interface.
    Hu K; Chen Z; Pu J
    Opt Lett; 2012 Aug; 37(16):3303-5. PubMed ID: 23381238
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optical cage generated by azimuthal- and radial-variant vector beams.
    Man Z; Bai Z; Li J; Zhang S; Li X; Zhang Y; Ge X; Fu S
    Appl Opt; 2018 May; 57(13):3592-3597. PubMed ID: 29726536
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Super-resolved pure-transverse focal fields with an enhanced energy density through focus of an azimuthally polarized first-order vortex beam.
    Li X; Venugopalan P; Ren H; Hong M; Gu M
    Opt Lett; 2014 Oct; 39(20):5961-4. PubMed ID: 25361130
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Vectorial structure of far field of cylindrically polarized beams diffracted at a circular aperture.
    Jia X; Wang Y
    Opt Lett; 2011 Jan; 36(2):295-7. PubMed ID: 21263531
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Control of the multifocal properties of composite vector beams in tightly focusing systems.
    Guo H; Sui G; Weng X; Dong X; Hu Q; Zhuang S
    Opt Express; 2011 Nov; 19(24):24067-77. PubMed ID: 22109432
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Focusing of spatially inhomogeneous partially coherent, partially polarized electromagnetic fields.
    Foreman MR; Török P
    J Opt Soc Am A Opt Image Sci Vis; 2009 Nov; 26(11):2470-9. PubMed ID: 19884950
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Switchable generation of azimuthally- and radially-polarized terahertz beams from a spintronic terahertz emitter.
    Niwa H; Yoshikawa N; Kawaguchi M; Hayashi M; Shimano R
    Opt Express; 2021 Apr; 29(9):13331-13343. PubMed ID: 33985069
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Feasibility study of the application of radially polarized illumination to solid immersion lens-based near-field optics.
    Yoon YJ; Kim WC; Park NC; Park KS; Park YP
    Opt Lett; 2009 Jul; 34(13):1961-3. PubMed ID: 19571966
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microchip solid-state cylindrical vector lasers with orthogonally polarized dual laser-diode end pumping.
    Otsuka K; Chu SC
    Opt Lett; 2013 May; 38(9):1434-6. PubMed ID: 23632509
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Generation of azimuthally and radially polarized off-axis beams with an intracavity large-apex-angle axicon.
    Chang KC; Lin T; Wei MD
    Opt Express; 2013 Jul; 21(13):16035-42. PubMed ID: 23842390
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Micro-hole drilling by tightly focused vector beams.
    Matsusaka S; Kozawa Y; Sato S
    Opt Lett; 2018 Apr; 43(7):1542-1545. PubMed ID: 29601025
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nonparaxial and paraxial focusing of azimuthal-variant vector beams.
    Gu B; Cui Y
    Opt Express; 2012 Jul; 20(16):17684-94. PubMed ID: 23038320
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Focus shaping using cylindrical vector beams.
    Zhan Q; Leger J
    Opt Express; 2002 Apr; 10(7):324-31. PubMed ID: 19436363
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mapping the electric field distribution of tightly focused cylindrical vector beams with gold nanorings.
    Fulmes J; Gollmer DA; Jäger S; Schäfer C; Horrer A; Zhang D; Adam PM; Meixner AJ; Kern DP; Fleischer M
    Opt Express; 2018 Jun; 26(12):14982-14998. PubMed ID: 30114752
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tight focusing of radially and azimuthally polarized vortex beams through a uniaxial birefringent crystal.
    Zhang Z; Pu J; Wang X
    Appl Opt; 2008 Apr; 47(12):1963-7. PubMed ID: 18425167
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.