These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 19424398)
1. Systematic error of lidar profiles caused by a polarization-dependent receiver transmission: quantification and error correction scheme. Mattis I; Tesche M; Grein M; Freudenthaler V; Müller D Appl Opt; 2009 May; 48(14):2742-51. PubMed ID: 19424398 [TBL] [Abstract][Full Text] [Related]
2. Correction technology of a polarization lidar with a complex optical system. Di H; Hua H; Cui Y; Hua D; Li B; Song Y J Opt Soc Am A Opt Image Sci Vis; 2016 Aug; 33(8):1488-94. PubMed ID: 27505646 [TBL] [Abstract][Full Text] [Related]
3. Three-signal method for accurate measurements of depolarization ratio with lidar. Reichardt J; Baumgart R; McGee TJ Appl Opt; 2003 Aug; 42(24):4909-13. PubMed ID: 12952338 [TBL] [Abstract][Full Text] [Related]
4. Particle backscatter and extinction profiling with the spaceborne high-spectral-resolution Doppler lidar ALADIN: methodology and simulations. Ansmann A; Wandinger U; Le Rille O; Lajas D; Straume AG Appl Opt; 2007 Sep; 46(26):6606-22. PubMed ID: 17846655 [TBL] [Abstract][Full Text] [Related]
5. Laser-based air data system for aircraft control using Raman and elastic backscatter for the measurement of temperature, density, pressure, moisture, and particle backscatter coefficient. Fraczek M; Behrendt A; Schmitt N Appl Opt; 2012 Jan; 51(2):148-66. PubMed ID: 22270512 [TBL] [Abstract][Full Text] [Related]
6. Light scattering characteristics of various aerosol types derived from multiple wavelength lidar observations. Sasano Y; Browell EV Appl Opt; 1989 May; 28(9):1670-9. PubMed ID: 20548724 [TBL] [Abstract][Full Text] [Related]
7. Development of an all-day portable polarization lidar system based on the division-of-focal-plane scheme for atmospheric polarization measurements. Kong Z; Ma T; Zheng K; Cheng Y; Gong Z; Hua D; Mei L Opt Express; 2021 Nov; 29(23):38512-38526. PubMed ID: 34808903 [TBL] [Abstract][Full Text] [Related]
8. Effect of multiple scattering on depolarization measurements with spaceborne lidars. Reichardt S; Reichardt J Appl Opt; 2003 Jun; 42(18):3620-33. PubMed ID: 12833968 [TBL] [Abstract][Full Text] [Related]
9. Comparisons of aerosol backscatter using satellite and ground lidars: implications for calibrating and validating spaceborne lidar. Gimmestad G; Forrister H; Grigas T; O'Dowd C Sci Rep; 2017 Feb; 7():42337. PubMed ID: 28198389 [TBL] [Abstract][Full Text] [Related]
10. Comparison of various linear depolarization parameters measured by lidar. Cairo F; Di Donfrancesco G; Adriani A; Pulvirenti L; Fierli F Appl Opt; 1999 Jul; 38(21):4425-32. PubMed ID: 18323927 [TBL] [Abstract][Full Text] [Related]
12. Polarization-discrimination technique to maximize the lidar signal-to-noise ratio for daylight operations. Hassebo YY; Gross B; Oo M; Moshary F; Ahmed S Appl Opt; 2006 Aug; 45(22):5521-31. PubMed ID: 16855650 [TBL] [Abstract][Full Text] [Related]
14. Sensitivity of the lidar solution to errors of the aerosol backscatter-to-extinction ratio: influence of a monotonic change in the aerosol extinction coefficient. Kovalev VA Appl Opt; 1995 Jun; 34(18):3457-62. PubMed ID: 21052160 [TBL] [Abstract][Full Text] [Related]
15. Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar. Ansmann A; Wandinger U; Riebesell M; Weitkamp C; Michaelis W Appl Opt; 1992 Nov; 31(33):7113. PubMed ID: 20802574 [TBL] [Abstract][Full Text] [Related]
16. Aerosol lidar intercomparison in the framework of the EARLINET project. 3. Raman lidar algorithm for aerosol extinction, backscatter, and lidar ratio. Pappalardo G; Amodeo A; Pandolfi M; Wandinger U; Ansmann A; Bösenberg J; Matthias V; Amiridis V; De Tomasi F; Frioud M; Larlori M; Komguem L; Papayannis A; Rocadenbosch F; Wang X Appl Opt; 2004 Oct; 43(28):5370-85. PubMed ID: 15495429 [TBL] [Abstract][Full Text] [Related]
17. Lidar beams in opposite directions for quality assessment of Cloud-Aerosol Lidar with Orthogonal Polarization spaceborne measurements. Cuesta J; Flamant PH Appl Opt; 2010 Apr; 49(12):2232-43. PubMed ID: 20411002 [TBL] [Abstract][Full Text] [Related]
18. Aerosol lidar intercomparison in the framework of the EARLINET project. 2. Aerosol backscatter algorithms. Böckmann C; Wandinger U; Ansmann A; Bösenberg J; Amiridis V; Boselli A; Delaval A; De Tomasi F; Frioud M; Grigorov IV; Hågård A; Horvat M; Iarlori M; Komguem L; Kreipl S; Larchevêque G; Matthias V; Papayannis A; Pappalardo G; Rocadenbosch F; Rodrigues JA; Schneider J; Shcherbakov V; Wiegner M Appl Opt; 2004 Feb; 43(4):977-89. PubMed ID: 14960094 [TBL] [Abstract][Full Text] [Related]
19. Quasi-analytical determination of noise-induced error limits in lidar retrieval of aerosol backscatter coefficient by the elastic, two-component algorithm. Sicard M; Comerón A; Rocadenbosch F; Rodríguez A; Muñoz C Appl Opt; 2009 Jan; 48(2):176-82. PubMed ID: 19137026 [TBL] [Abstract][Full Text] [Related]
20. Airborne polarized lidar detection of scattering layers in the ocean. Vasilkov AP; Goldin YA; Gureev BA; Hoge FE; Swift RN; Wright CW Appl Opt; 2001 Aug; 40(24):4353-64. PubMed ID: 18360476 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]