These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 19424401)

  • 1. Five-degrees-of-freedom diffractive laser encoder.
    Liu CH; Huang HL; Lee HW
    Appl Opt; 2009 May; 48(14):2767-77. PubMed ID: 19424401
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a three-degree-of-freedom laser linear encoder for error measurement of a high precision stage.
    Huang HL; Liu CH; Jywe WY; Wang MS; Fang TH
    Rev Sci Instrum; 2007 Jun; 78(6):066103. PubMed ID: 17614647
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Laser homodyne straightness interferometer with simultaneous measurement of six degrees of freedom motion errors for precision linear stage metrology.
    Lou Y; Yan L; Chen B; Zhang S
    Opt Express; 2017 Mar; 25(6):6805-6821. PubMed ID: 28381023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Five-degrees-of-freedom measurement system based on a monolithic prism and phase-sensitive detection technique.
    Huang P; Li Y; Wei H; Ren L; Zhao S
    Appl Opt; 2013 Sep; 52(26):6607-15. PubMed ID: 24085139
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Ultra-Precision Absolute-Type Multi-Degree-of-Freedom Grating Encoder.
    Wang S; Luo L; Zhu J; Shi N; Li X
    Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36501749
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Compact and High-Precision Three-Degree-of-Freedom Grating Encoder Based on a Quadrangular Frustum Pyramid Prism.
    Wang S; Liao B; Shi N; Li X
    Sensors (Basel); 2023 Apr; 23(8):. PubMed ID: 37112362
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Laser straightness interferometer system with rotational error compensation and simultaneous measurement of six degrees of freedom error parameters.
    Chen B; Xu B; Yan L; Zhang E; Liu Y
    Opt Express; 2015 Apr; 23(7):9052-73. PubMed ID: 25968740
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Approach to Measure Tilt Motion, Straightness and Position of Precision Linear Stage with a 3D Sinusoidal-Groove Linear Reflective Grating and Triangular Wave-Based Subdivision Method.
    Tsai HA; Lo YL
    Sensors (Basel); 2019 Jun; 19(12):. PubMed ID: 31238542
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Targetless Method for Simultaneously Measuring Three-Degree-of-Freedom Angular Motion Errors with Digital Speckle Pattern Interferometry.
    Shi L; Wu S; Yan M; Niu H
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of a Measurement System for Six-Degree-of-Freedom Geometric Errors of a Linear Guide of a Machine Tool.
    Liu CS; Lai JJ; Luo YT
    Sensors (Basel); 2018 Dec; 19(1):. PubMed ID: 30577462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a diffraction-type optical triangulation sensor.
    Liu CH; Jywe WY; Chen CK
    Appl Opt; 2004 Oct; 43(30):5607-13. PubMed ID: 15534991
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-precision miniaturized low-cost reflective grating laser encoder with nanometric accuracy.
    Goudarzi Khouygani MH; Jeng JY
    Appl Opt; 2020 Jul; 59(19):5764-5771. PubMed ID: 32609702
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of the position and orientation of a flat piezoelectric micro-stage by moving the optical axis.
    Zhuang GY; Lee HW; Liu CH
    Rev Sci Instrum; 2014 Oct; 85(10):105004. PubMed ID: 25362446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical Sensors for Multi-Axis Angle and Displacement Measurement Using Grating Reflectors.
    Shimizu Y; Matsukuma H; Gao W
    Sensors (Basel); 2019 Dec; 19(23):. PubMed ID: 31805630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low cost, compact 4-DOF measurement system with active compensation of beam angular drift error.
    Huang Y; Fan KC; Sun W; Liu S
    Opt Express; 2018 Jun; 26(13):17185-17198. PubMed ID: 30119533
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-degree-of-freedom autocollimator based on a combined target reflector.
    Guo Y; Cheng H; Wen Y; Feng Y
    Appl Opt; 2020 Mar; 59(8):2262-2269. PubMed ID: 32225756
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A high-precision five-degree-of-freedom measurement system based on laser collimator and interferometry techniques.
    Kuang C; Hong E; Ni J
    Rev Sci Instrum; 2007 Sep; 78(9):095105. PubMed ID: 17902972
    [TBL] [Abstract][Full Text] [Related]  

  • 18. System for simultaneously measuring 6DOF geometric motion errors using a polarization maintaining fiber-coupled dual-frequency laser.
    Cui C; Feng Q; Zhang B; Zhao Y
    Opt Express; 2016 Mar; 24(6):6735-48. PubMed ID: 27136860
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Linear diffraction grating interferometer with high alignment tolerance and high accuracy.
    Cheng F; Fan KC
    Appl Opt; 2011 Aug; 50(22):4550-6. PubMed ID: 21833131
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crosstalk decoupling measurement method to determine the six degrees of freedom of motion error of linear stages.
    Diao K; Chen C; Leach R; Liu X; Lu W; Yang W
    Appl Opt; 2022 Feb; 61(6):1284-1291. PubMed ID: 35201007
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.