These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 19424419)

  • 1. Repair-mediated duplication by capture of proximal chromosomal DNA has shaped vertebrate genome evolution.
    Pace JK; Sen SK; Batzer MA; Feschotte C
    PLoS Genet; 2009 May; 5(5):e1000469. PubMed ID: 19424419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numt-mediated double-strand break repair mitigates deletions during primate genome evolution.
    Hazkani-Covo E; Covo S
    PLoS Genet; 2008 Oct; 4(10):e1000237. PubMed ID: 18949041
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A model of segmental duplication formation in Drosophila melanogaster.
    Fiston-Lavier AS; Anxolabehere D; Quesneville H
    Genome Res; 2007 Oct; 17(10):1458-70. PubMed ID: 17726166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Whole genome duplications and expansion of the vertebrate GATA transcription factor gene family.
    Gillis WQ; St John J; Bowerman B; Schneider SQ
    BMC Evol Biol; 2009 Aug; 9():207. PubMed ID: 19695090
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Natural insertions in rice commonly form tandem duplications indicative of patch-mediated double-strand break induction and repair.
    Vaughn JN; Bennetzen JL
    Proc Natl Acad Sci U S A; 2014 May; 111(18):6684-9. PubMed ID: 24760826
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A non-human primate BAC resource to study interchromosomal segmental duplications.
    Kirsch S; Hodler C; Schempp W
    Cytogenet Genome Res; 2009; 125(4):253-9. PubMed ID: 19864887
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Telomeric-Like Repeats Flanked by Sequences Retrotranscribed from the Telomerase RNA Inserted at DNA Double-Strand Break Sites during Vertebrate Genome Evolution.
    Sola L; Nergadze SG; Cappelletti E; Piras FM; Giulotto E; Santagostino M
    Int J Mol Sci; 2021 Oct; 22(20):. PubMed ID: 34681704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human-specific duplication and mosaic transcripts: the recent paralogous structure of chromosome 22.
    Bailey JA; Yavor AM; Viggiano L; Misceo D; Horvath JE; Archidiacono N; Schwartz S; Rocchi M; Eichler EE
    Am J Hum Genet; 2002 Jan; 70(1):83-100. PubMed ID: 11731936
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hox clusters as models for vertebrate genome evolution.
    Hoegg S; Meyer A
    Trends Genet; 2005 Aug; 21(8):421-4. PubMed ID: 15967537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ionizing radiation and genetic risks. XVII. Formation mechanisms underlying naturally occurring DNA deletions in the human genome and their potential relevance for bridging the gap between induced DNA double-strand breaks and deletions in irradiated germ cells.
    Sankaranarayanan K; Taleei R; Rahmanian S; Nikjoo H
    Mutat Res; 2013; 753(2):114-130. PubMed ID: 23948232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inviting instability: Transposable elements, double-strand breaks, and the maintenance of genome integrity.
    Hedges DJ; Deininger PL
    Mutat Res; 2007 Mar; 616(1-2):46-59. PubMed ID: 17157332
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of lamprey and hagfish genes reveals a complex history of gene duplications during early vertebrate evolution.
    Escriva H; Manzon L; Youson J; Laudet V
    Mol Biol Evol; 2002 Sep; 19(9):1440-50. PubMed ID: 12200472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inter-species sequence comparison of Brachypodium reveals how transposon activity corrodes genome colinearity.
    Buchmann JP; Matsumoto T; Stein N; Keller B; Wicker T
    Plant J; 2012 Aug; 71(4):550-63. PubMed ID: 22448600
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Repair of DNA double-strand breaks by templated nucleotide sequence insertions derived from distant regions of the genome.
    Onozawa M; Zhang Z; Kim YJ; Goldberg L; Varga T; Bergsagel PL; Kuehl WM; Aplan PD
    Proc Natl Acad Sci U S A; 2014 May; 111(21):7729-34. PubMed ID: 24821809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human subtelomeres are hot spots of interchromosomal recombination and segmental duplication.
    Linardopoulou EV; Williams EM; Fan Y; Friedman C; Young JM; Trask BJ
    Nature; 2005 Sep; 437(7055):94-100. PubMed ID: 16136133
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The origins and impact of primate segmental duplications.
    Marques-Bonet T; Girirajan S; Eichler EE
    Trends Genet; 2009 Oct; 25(10):443-54. PubMed ID: 19796838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Serial segmental duplications during primate evolution result in complex human genome architecture.
    Stankiewicz P; Shaw CJ; Withers M; Inoue K; Lupski JR
    Genome Res; 2004 Nov; 14(11):2209-20. PubMed ID: 15520286
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An evolutionary driver of interspersed segmental duplications in primates.
    Cantsilieris S; Sunkin SM; Johnson ME; Anaclerio F; Huddleston J; Baker C; Dougherty ML; Underwood JG; Sulovari A; Hsieh P; Mao Y; Catacchio CR; Malig M; Welch AE; Sorensen M; Munson KM; Jiang W; Girirajan S; Ventura M; Lamb BT; Conlon RA; Eichler EE
    Genome Biol; 2020 Aug; 21(1):202. PubMed ID: 32778141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The gain and loss of genes during 600 million years of vertebrate evolution.
    Blomme T; Vandepoele K; De Bodt S; Simillion C; Maere S; Van de Peer Y
    Genome Biol; 2006; 7(5):R43. PubMed ID: 16723033
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Primate segmental duplications: crucibles of evolution, diversity and disease.
    Bailey JA; Eichler EE
    Nat Rev Genet; 2006 Jul; 7(7):552-64. PubMed ID: 16770338
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.