These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 19424683)

  • 41. Improved quantitative analysis of ion mobility spectrometry by chemometric multivariate calibration.
    Fraga CG; Kerr DR; Atkinson DA
    Analyst; 2009 Nov; 134(11):2329-37. PubMed ID: 19838423
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Trace detection and discrimination of explosives using electrochemical potentiometric gas sensors.
    Sekhar PK; Brosha EL; Mukundan R; Linker KL; Brusseau C; Garzon FH
    J Hazard Mater; 2011 Jun; 190(1-3):125-32. PubMed ID: 21435779
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Detection of explosives in hair using ion mobility spectrometry.
    Oxley JC; Smith JL; Kirschenbaum LJ; Marimganti S; Vadlamannati S
    J Forensic Sci; 2008 May; 53(3):690-3. PubMed ID: 18471216
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Characterizing the gas phase ion chemistry of an ion trap mobility spectrometry based explosive trace detector using a tandem mass spectrometer.
    Kozole J; Tomlinson-Phillips J; Stairs JR; Harper JD; Lukow SR; Lareau RT; Boudries H; Lai H; Brauer CS
    Talanta; 2012 Sep; 99():799-810. PubMed ID: 22967626
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Modular ion mobility spectrometer for explosives detection using corona ionization.
    Roscioli KM; Davis E; Siems WF; Mariano A; Su W; Guharay SK; Hill HH
    Anal Chem; 2011 Aug; 83(15):5965-71. PubMed ID: 21682306
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Application of solid-phase microextraction to the recovery of organic explosives.
    Kirkbride KP; Klass G; Pigou PE
    J Forensic Sci; 1998 Jan; 43(1):76-81. PubMed ID: 9456529
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Interfacing an ion mobility spectrometry based explosive trace detector to a triple quadrupole mass spectrometer.
    Kozole J; Stairs JR; Cho I; Harper JD; Lukow SR; Lareau RT; DeBono R; Kuja F
    Anal Chem; 2011 Nov; 83(22):8596-603. PubMed ID: 22017332
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Dopant-assisted reactive low temperature plasma probe for sensitive and specific detection of explosives.
    Chen W; Hou K; Hua L; Li H
    Analyst; 2015 Sep; 140(17):6025-30. PubMed ID: 26191543
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Quantitative calibration of vapor levels of TNT, RDX, and PETN using a diffusion generator with gravimetry and ion mobility spectrometry.
    Eiceman GA; Preston D; Tiano G; Rodriguez J; Parmeter JE
    Talanta; 1997 Dec; 45(1):57-74. PubMed ID: 18966981
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Limits of detection of explosives as determined with IMS and field asymmetric IMS vapour detectors.
    Zalewska A; Pawłowski W; Tomaszewski W
    Forensic Sci Int; 2013 Mar; 226(1-3):168-72. PubMed ID: 23375778
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Direct real-time detection of vapors from explosive compounds.
    Ewing RG; Clowers BH; Atkinson DA
    Anal Chem; 2013 Nov; 85(22):10977-83. PubMed ID: 24090362
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Detection of condensed-phase explosives via laser-induced vaporization, photodissociation, and resonant excitation.
    Wynn CM; Palmacci S; Kunz RR; Clow K; Rothschild M
    Appl Opt; 2008 Nov; 47(31):5767-76. PubMed ID: 19122718
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Micellar extraction and high performance liquid chromatography-ultra violet determination of some explosives in water samples.
    Babaee S; Beiraghi A
    Anal Chim Acta; 2010 Mar; 662(1):9-13. PubMed ID: 20152259
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Characterization of TATP gas phase product ion chemistry via isotope labeling experiments using ion mobility spectrometry interfaced with a triple quadrupole mass spectrometer.
    Tomlinson-Phillips J; Wooten A; Kozole J; Deline J; Beresford P; Stairs J
    Talanta; 2014 Sep; 127():152-62. PubMed ID: 24913870
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Rapid screening of selected organic explosives by high performance liquid chromatography using reversed-phase monolithic columns.
    Paull B; Roux C; Dawson M; Doble P
    J Forensic Sci; 2004 Nov; 49(6):1181-6. PubMed ID: 15568688
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A second survey of high explosives traces in public places.
    Cullum HE; McGavigan C; Uttley CZ; Stroud MA; Warren DC
    J Forensic Sci; 2004 Jul; 49(4):684-90. PubMed ID: 15317181
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Flexible Drift Tube for High Resolution Ion Mobility Spectrometry (Flex-DT-IMS).
    Smith BL; Boisdon C; Young IS; Praneenararat T; Vilaivan T; Maher S
    Anal Chem; 2020 Jul; 92(13):9104-9112. PubMed ID: 32479060
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Stir-bar sorptive extraction and thermal desorption-ion mobility spectrometry for the determination of trinitrotoluene and l,3,5-trinitro-l,3,5-triazine in water samples.
    Lokhnauth JK; Snow NH
    J Chromatogr A; 2006 Feb; 1105(1-2):33-8. PubMed ID: 16249003
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Fluorescence and piezoresistive cantilever sensing of trinitrotoluene by an upper-rim tetrabenzimidazole conjugate of calix[4]arene and delineation of the features of the complex by molecular dynamics.
    Kandpal M; Bandela AK; Hinge VK; Rao VR; Rao CP
    ACS Appl Mater Interfaces; 2013 Dec; 5(24):13448-56. PubMed ID: 24320549
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Desorption electrospray ionization of explosives on surfaces: sensitivity and selectivity enhancement by reactive desorption electrospray ionization.
    Cotte-Rodríguez I; Takáts Z; Talaty N; Chen H; Cooks RG
    Anal Chem; 2005 Nov; 77(21):6755-64. PubMed ID: 16255571
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.