These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 19424687)

  • 1. Neural mechanisms of movement speed and tau as revealed by magnetoencephalography.
    Tan H-RM; Leuthold AC; Lee DN; Lynch JK; Georgopoulos AP
    Exp Brain Res; 2009 Jun; 195(4):541-52. PubMed ID: 19424687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visual cortex activation in kinesthetic guidance of reaching.
    Darling WG; Seitz RJ; Peltier S; Tellmann L; Butler AJ
    Exp Brain Res; 2007 Jun; 179(4):607-19. PubMed ID: 17171536
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial-temporal dynamics of cortical activity underlying reaching and grasping.
    Virji-Babul N; Moiseev A; Cheung T; Weeks D; Cheyne D; Ribary U
    Hum Brain Mapp; 2010 Jan; 31(1):160-71. PubMed ID: 19593776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatiotemporal mapping of cortical activity accompanying voluntary movements using an event-related beamforming approach.
    Cheyne D; Bakhtazad L; Gaetz W
    Hum Brain Mapp; 2006 Mar; 27(3):213-29. PubMed ID: 16037985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in cerebral activations during movement execution and imagery after parietal cortex TMS interleaved with 3T MRI.
    de Vries PM; de Jong BM; Bohning DE; Walker JA; George MS; Leenders KL
    Brain Res; 2009 Aug; 1285():58-68. PubMed ID: 19523932
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integration of target and effector information in the human brain during reach planning.
    Beurze SM; de Lange FP; Toni I; Medendorp WP
    J Neurophysiol; 2007 Jan; 97(1):188-99. PubMed ID: 16928798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuronal synchronization in human posterior parietal cortex during reach planning.
    Van Der Werf J; Jensen O; Fries P; Medendorp WP
    J Neurosci; 2010 Jan; 30(4):1402-12. PubMed ID: 20107066
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatio-temporal brain activation profiles associated with line bisection judgments and double simultaneous visual stimulation.
    Billingsley RL; Simos PG; Sarkari S; Fletcher JM; Papanicolaou AC
    Behav Brain Res; 2004 Jun; 152(1):97-107. PubMed ID: 15135973
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatiotemporal neural interactions underlying continuous drawing movements as revealed by magnetoencephalography.
    Christopoulos VN; Leuthold AC; Georgopoulos AP
    Exp Brain Res; 2012 Oct; 222(1-2):159-71. PubMed ID: 22923206
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Categorical and coordinate spatial relations in working memory: an fMRI study.
    van der Ham IJ; Raemaekers M; van Wezel RJ; Oleksiak A; Postma A
    Brain Res; 2009 Nov; 1297():70-9. PubMed ID: 19651111
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatially precise bilateral arm movements are controlled by the contralateral hemisphere: evidence from a lateralized visual stimulus paradigm.
    Garry MI; Franks IM
    Exp Brain Res; 2002 Jan; 142(2):292-6. PubMed ID: 11807583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural mechanisms of spatial stimulus-response compatibility: the effect of crossed-hand position.
    Matsumoto E; Misaki M; Miyauchi S
    Exp Brain Res; 2004 Sep; 158(1):9-17. PubMed ID: 15029467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cortical oscillatory power changes during auditory oddball task revealed by spatially filtered magnetoencephalography.
    Ishii R; Canuet L; Herdman A; Gunji A; Iwase M; Takahashi H; Nakahachi T; Hirata M; Robinson SE; Pantev C; Takeda M
    Clin Neurophysiol; 2009 Mar; 120(3):497-504. PubMed ID: 19138878
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial interference during bimanual coordination: differential brain networks associated with control of movement amplitude and direction.
    Wenderoth N; Debaere F; Sunaert S; Swinnen SP
    Hum Brain Mapp; 2005 Dec; 26(4):286-300. PubMed ID: 15965999
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of parietal cortex during sustained visual spatial attention.
    Thakral PP; Slotnick SD
    Brain Res; 2009 Dec; 1302():157-66. PubMed ID: 19765554
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The neural basis of ego- and allocentric reference frames in spatial navigation: evidence from spatio-temporal coupled current density reconstruction.
    Gramann K; Müller HJ; Schönebeck B; Debus G
    Brain Res; 2006 Nov; 1118(1):116-29. PubMed ID: 16996041
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural networks of response shifting: influence of task speed and stimulus material.
    Loose R; Kaufmann C; Tucha O; Auer DP; Lange KW
    Brain Res; 2006 May; 1090(1):146-55. PubMed ID: 16643867
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tuning curves for movement direction in the human visuomotor system.
    Fabbri S; Caramazza A; Lingnau A
    J Neurosci; 2010 Oct; 30(40):13488-98. PubMed ID: 20926674
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural correlates of spatial working memory in humans: a functional magnetic resonance imaging study comparing visual and tactile processes.
    Ricciardi E; Bonino D; Gentili C; Sani L; Pietrini P; Vecchi T
    Neuroscience; 2006 Apr; 139(1):339-49. PubMed ID: 16324793
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Between-trial inhibition and facilitation in goal-directed aiming: manual and spatial asymmetries.
    Tremblay L; Welsh TN; Elliott D
    Exp Brain Res; 2005 Jan; 160(1):79-88. PubMed ID: 15316705
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.