These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 19425110)

  • 21. A quantitative analysis of the dendritic organization of pyramidal cells in the rat hippocampus.
    Ishizuka N; Cowan WM; Amaral DG
    J Comp Neurol; 1995 Nov; 362(1):17-45. PubMed ID: 8576427
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparison of the efferents of the amygdala and the hippocampal formation in the rhesus monkey: II. Reciprocal and non-reciprocal connections.
    Saunders RC; Rosene DL; Van Hoesen GW
    J Comp Neurol; 1988 May; 271(2):185-207. PubMed ID: 2454247
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Analysis of information transmission in the Schaffer collaterals.
    Schultz SR; Rolls ET
    Hippocampus; 1999; 9(5):582-98. PubMed ID: 10560929
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evidence for collateral projections by neurons in Ammon's horn, the dentate gyrus, and the subiculum: a multiple retrograde labeling study in the rat.
    Swanson LW; Sawchenko PE; Cowan WM
    J Neurosci; 1981 May; 1(5):548-59. PubMed ID: 6180146
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pattern of long-distance projections from fetal hippocampal field CA3 and CA1 cell grafts in lesioned CA3 of adult hippocampus follows intrinsic character of respective donor cells.
    Shetty AK; Zaman V; Turner DA
    Neuroscience; 2000; 99(2):243-55. PubMed ID: 10938430
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cortical projections of the non-entorhinal hippocampal formation in the cynomolgus monkey (Macaca fascicularis).
    Insausti R; Muñoz M
    Eur J Neurosci; 2001 Aug; 14(3):435-51. PubMed ID: 11553294
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Zonal distribution of perforant path cells in layer III of the entorhinal area projecting to CA1 and subiculum in the rat.
    Honda Y; Sasaki H; Umitsu Y; Ishizuka N
    Neurosci Res; 2012 Dec; 74(3-4):200-9. PubMed ID: 23131426
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of hippocampal, amygdala, and perirhinal projections to the nucleus accumbens: combined anterograde and retrograde tracing study in the Macaque brain.
    Friedman DP; Aggleton JP; Saunders RC
    J Comp Neurol; 2002 Sep; 450(4):345-65. PubMed ID: 12209848
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hippocampal CA3 inhibitory neurons receive extensive noncanonical synaptic inputs from CA1 and subicular complex.
    Lin X; Cyrus N; Avila B; Holmes TC; Xu X
    J Comp Neurol; 2023 Sep; 531(13):1333-1347. PubMed ID: 37312626
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reciprocal connections between the entorhinal cortex and hippocampal fields CA1 and the subiculum are in register with the projections from CA1 to the subiculum.
    Naber PA; Lopes da Silva FH; Witter MP
    Hippocampus; 2001; 11(2):99-104. PubMed ID: 11345131
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Convergence of entorhinal and CA3 inputs onto pyramidal neurons and interneurons in hippocampal area CA1--an anatomical study in the rat.
    Kajiwara R; Wouterlood FG; Sah A; Boekel AJ; Baks-te Bulte LT; Witter MP
    Hippocampus; 2008; 18(3):266-80. PubMed ID: 18000818
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Projections from the lateral, basal, and accessory basal nuclei of the amygdala to the entorhinal cortex in the macaque monkey.
    Pitkänen A; Kelly JL; Amaral DG
    Hippocampus; 2002; 12(2):186-205. PubMed ID: 12000118
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fields of origin and pathways of the interhemispheric commissures in the temporal lobe of macaques.
    Demeter S; Rosene DL; Van Hoesen GW
    J Comp Neurol; 1990 Dec; 302(1):29-53. PubMed ID: 2086614
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An extrahippocampal projection from the dentate gyrus to the olfactory tubercle.
    Künzle H
    BMC Neurosci; 2005 May; 6():38. PubMed ID: 15927048
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Entorhinal projections to the hippocampal CA1 region in the rat: an underestimated pathway.
    Witter MP; Griffioen AW; Jorritsma-Byham B; Krijnen JL
    Neurosci Lett; 1988 Feb; 85(2):193-8. PubMed ID: 3374835
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The hippocampal CA3 network: an in vivo intracellular labeling study.
    Li XG; Somogyi P; Ylinen A; Buzsáki G
    J Comp Neurol; 1994 Jan; 339(2):181-208. PubMed ID: 8300905
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Longitudinal fiber systems in the hippocampal formation].
    Ishizuka N
    Brain Nerve; 2008 Jul; 60(7):737-45. PubMed ID: 18646613
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Parvalbumin- and calbindin D28k-immunoreactive neurons in the hippocampal formation of the macaque monkey.
    Seress L; Gulyás AI; Freund TF
    J Comp Neurol; 1991 Nov; 313(1):162-77. PubMed ID: 1761752
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Thalamic projections to the hippocampal formation in the cat.
    Yanagihara M; Ono K; Niimi K
    Neurosci Lett; 1985 Oct; 61(1-2):31-5. PubMed ID: 4080258
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The entorhinal cortex of the monkey: II. Cortical afferents.
    Insausti R; Amaral DG; Cowan WM
    J Comp Neurol; 1987 Oct; 264(3):356-95. PubMed ID: 2445796
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.