BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 19425155)

  • 1. Modelling the evolution of protein coding sequences sampled from Measurably Evolving Populations.
    Goode M; Guindon S; Rodrigo A
    Genome Inform; 2008; 21():150-64. PubMed ID: 19425155
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A model of directional selection applied to the evolution of drug resistance in HIV-1.
    Seoighe C; Ketwaroo F; Pillay V; Scheffler K; Wood N; Duffet R; Zvelebil M; Martinson N; McIntyre J; Morris L; Hide W
    Mol Biol Evol; 2007 Apr; 24(4):1025-31. PubMed ID: 17272680
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An empirical codon model for protein sequence evolution.
    Kosiol C; Holmes I; Goldman N
    Mol Biol Evol; 2007 Jul; 24(7):1464-79. PubMed ID: 17400572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective pressures at a codon-level predict deleterious mutations in human disease genes.
    Arbiza L; Duchi S; Montaner D; Burguet J; Pantoja-Uceda D; Pineda-Lucena A; Dopazo J; Dopazo H
    J Mol Biol; 2006 May; 358(5):1390-404. PubMed ID: 16584746
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synonymous substitutions substantially improve evolutionary inference from highly diverged proteins.
    Seo TK; Kishino H
    Syst Biol; 2008 Jun; 57(3):367-77. PubMed ID: 18570032
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A combined empirical and mechanistic codon model.
    Doron-Faigenboim A; Pupko T
    Mol Biol Evol; 2007 Feb; 24(2):388-97. PubMed ID: 17110464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lost in translation: implications of HIV-1 codon usage for immune escape and drug resistance.
    Kijak GH; Currier JR; Tovanabutra S; Cox JH; Michael NL; Wegner SA; Birx DL; McCutchan FE
    AIDS Rev; 2004; 6(1):54-60. PubMed ID: 15168741
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inferring evolutionary rates using serially sampled sequences from several populations.
    Rodrigo AG; Goode M; Forsberg R; Ross HA; Drummond A
    Mol Biol Evol; 2003 Dec; 20(12):2010-8. PubMed ID: 12949147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards realistic codon models: among site variability and dependency of synonymous and non-synonymous rates.
    Mayrose I; Doron-Faigenboim A; Bacharach E; Pupko T
    Bioinformatics; 2007 Jul; 23(13):i319-27. PubMed ID: 17646313
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Likelihood-based clustering (LiBaC) for codon models, a method for grouping sites according to similarities in the underlying process of evolution.
    Bao L; Gu H; Dunn KA; Bielawski JP
    Mol Biol Evol; 2008 Sep; 25(9):1995-2007. PubMed ID: 18586695
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A statistical characterization of consistent patterns of human immunodeficiency virus evolution within infected patients.
    Williamson S; Perry SM; Bustamante CD; Orive ME; Stearns MN; Kelly JK
    Mol Biol Evol; 2005 Mar; 22(3):456-68. PubMed ID: 15509726
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimating the distribution of selection coefficients from phylogenetic data with applications to mitochondrial and viral DNA.
    Nielsen R; Yang Z
    Mol Biol Evol; 2003 Aug; 20(8):1231-9. PubMed ID: 12777508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An evolutionary model for protein-coding regions with conserved RNA structure.
    Pedersen JS; Forsberg R; Meyer IM; Hein J
    Mol Biol Evol; 2004 Oct; 21(10):1913-22. PubMed ID: 15229291
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A codon-based model of host-specific selection in parasites, with an application to the influenza A virus.
    Forsberg R; Christiansen FB
    Mol Biol Evol; 2003 Aug; 20(8):1252-9. PubMed ID: 12777510
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Codon substitution models based on residue similarity and their applications.
    Liu X; Liu H; Guo W; Yu K
    Gene; 2012 Nov; 509(1):136-41. PubMed ID: 22902303
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Testing for covarion-like evolution in protein sequences.
    Wang HC; Spencer M; Susko E; Roger AJ
    Mol Biol Evol; 2007 Jan; 24(1):294-305. PubMed ID: 17056642
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A model-based approach to study nearest-neighbor influences reveals complex substitution patterns in non-coding sequences.
    Baele G; Van de Peer Y; Vansteelandt S
    Syst Biol; 2008 Oct; 57(5):675-92. PubMed ID: 18853356
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigating protein-coding sequence evolution with probabilistic codon substitution models.
    Anisimova M; Kosiol C
    Mol Biol Evol; 2009 Feb; 26(2):255-71. PubMed ID: 18922761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Statistical comparison of nucleotide, amino acid, and codon substitution models for evolutionary analysis of protein-coding sequences.
    Seo TK; Kishino H
    Syst Biol; 2009 Apr; 58(2):199-210. PubMed ID: 20525578
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An evolutionary analytical model of a complementary circular code simulating the protein coding genes, the 5' and 3' regions.
    Arquès DG; Fallot JP; Michel CJ
    Bull Math Biol; 1998 Jan; 60(1):163-94. PubMed ID: 9530018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.