BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 19425246)

  • 1. Destabilization of the hydrogen-bond structure of water by the osmolyte trimethylamine N-oxide.
    Rezus YL; Bakker HJ
    J Phys Chem B; 2009 Apr; 113(13):4038-44. PubMed ID: 19425246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring the molecular mechanism of trimethylamine-N-oxide's ability to counteract the protein denaturing effects of urea.
    Sarma R; Paul S
    J Phys Chem B; 2013 May; 117(18):5691-704. PubMed ID: 23586614
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crucial importance of water structure modification on trimethylamine N-oxide counteracting effect at high pressure.
    Sarma R; Paul S
    J Phys Chem B; 2013 Jan; 117(2):677-89. PubMed ID: 23268746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of urea, tetramethyl urea, and trimethylamine N-oxide on aqueous solution structure and solvation of protein backbones: a molecular dynamics simulation study.
    Wei H; Fan Y; Gao YQ
    J Phys Chem B; 2010 Jan; 114(1):557-68. PubMed ID: 19928871
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Water-mediated interactions between trimethylamine-N-oxide and urea.
    Hunger J; Ottosson N; Mazur K; Bonn M; Bakker HJ
    Phys Chem Chem Phys; 2015 Jan; 17(1):298-306. PubMed ID: 25138965
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A study of the interaction between TMAO and urea in water using NMR spectroscopy.
    Nasralla M; Laurent H; Baker DL; Ries ME; Dougan L
    Phys Chem Chem Phys; 2022 Sep; 24(35):21216-21222. PubMed ID: 36040138
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactions of S-peptide analogue in aqueous urea and trimethylamine-N-oxide solutions: a molecular dynamics simulation study.
    Sarma R; Paul S
    J Chem Phys; 2013 Jul; 139(3):034504. PubMed ID: 23883044
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and interaction in aqueous urea-trimethylamine-N-oxide solutions.
    Paul S; Patey GN
    J Am Chem Soc; 2007 Apr; 129(14):4476-82. PubMed ID: 17373796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Counteraction of urea by trimethylamine N-oxide is due to direct interaction.
    Meersman F; Bowron D; Soper AK; Koch MH
    Biophys J; 2009 Nov; 97(9):2559-66. PubMed ID: 19883599
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complex formation in aqueous trimethylamine-N-oxide (TMAO) solutions.
    Hunger J; Tielrooij KJ; Buchner R; Bonn M; Bakker HJ
    J Phys Chem B; 2012 Apr; 116(16):4783-95. PubMed ID: 22458563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The molecular mechanism of stabilization of proteins by TMAO and its ability to counteract the effects of urea.
    Zou Q; Bennion BJ; Daggett V; Murphy KP
    J Am Chem Soc; 2002 Feb; 124(7):1192-202. PubMed ID: 11841287
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamical Effects of Trimethylamine N-Oxide on Aqueous Solutions of Urea.
    Teng X; Ichiye T
    J Phys Chem B; 2019 Feb; 123(5):1108-1115. PubMed ID: 30638025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Destruction of hydrogen bonds of poly(N-isopropylacrylamide) aqueous solution by trimethylamine N-oxide.
    Reddy PM; Taha M; Venkatesu P; Kumar A; Lee MJ
    J Chem Phys; 2012 Jun; 136(23):234904. PubMed ID: 22779616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Noncovalent Interactions between Trimethylamine N-Oxide (TMAO), Urea, and Water.
    Zetterholm SG; Verville GA; Boutwell L; Boland C; Prather JC; Bethea J; Cauley J; Warren KE; Smith SA; Magers DH; Hammer NI
    J Phys Chem B; 2018 Sep; 122(38):8805-8811. PubMed ID: 30165021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrophobic molecules slow down the hydrogen-bond dynamics of water.
    Bakulin AA; Pshenichnikov MS; Bakker HJ; Petersen C
    J Phys Chem A; 2011 Mar; 115(10):1821-9. PubMed ID: 21214234
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of aqueous solutions of trimethylamine-N-oxide on pressure induced modifications of hydrophobic interactions.
    Sarma R; Paul S
    J Chem Phys; 2012 Sep; 137(9):094502. PubMed ID: 22957576
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Volume exclusion and H-bonding dominate the thermodynamics and solvation of trimethylamine-N-oxide in aqueous urea.
    Rösgen J; Jackson-Atogi R
    J Am Chem Soc; 2012 Feb; 134(7):3590-7. PubMed ID: 22280147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Osmolyte trimethylamine-N-oxide does not affect the strength of hydrophobic interactions: origin of osmolyte compatibility.
    Athawale MV; Dordick JS; Garde S
    Biophys J; 2005 Aug; 89(2):858-66. PubMed ID: 15894642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of urea and trimethylamine-N-oxide on the properties of water and the secondary structure of hen egg white lysozyme.
    Panuszko A; Bruździak P; Zielkiewicz J; Wyrzykowski D; Stangret J
    J Phys Chem B; 2009 Nov; 113(44):14797-809. PubMed ID: 19813739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trimethylamine-N-oxide: its hydration structure, surface activity, and biological function, viewed by vibrational spectroscopy and molecular dynamics simulations.
    Ohto T; Hunger J; Backus EH; Mizukami W; Bonn M; Nagata Y
    Phys Chem Chem Phys; 2017 Mar; 19(10):6909-6920. PubMed ID: 28149990
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.