BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 19425588)

  • 1. Crucial role of Asp408 in the proton translocation pathway of multidrug transporter AcrB: evidence from site-directed mutagenesis and carbodiimide labeling.
    Seeger MA; von Ballmoos C; Verrey F; Pos KM
    Biochemistry; 2009 Jun; 48(25):5801-12. PubMed ID: 19425588
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Drug transport mechanism of the AcrB efflux pump.
    Pos KM
    Biochim Biophys Acta; 2009 May; 1794(5):782-93. PubMed ID: 19166984
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The AcrB efflux pump: conformational cycling and peristalsis lead to multidrug resistance.
    Seeger MA; Diederichs K; Eicher T; Brandstätter L; Schiefner A; Verrey F; Pos KM
    Curr Drug Targets; 2008 Sep; 9(9):729-49. PubMed ID: 18781920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Site-directed mutagenesis reveals amino acid residues in the Escherichia coli RND efflux pump AcrB that confer macrolide resistance.
    Wehmeier C; Schuster S; Fähnrich E; Kern WV; Bohnert JA
    Antimicrob Agents Chemother; 2009 Jan; 53(1):329-30. PubMed ID: 18936189
    [No Abstract]   [Full Text] [Related]  

  • 5. Threonine-978 in the transmembrane segment of the multidrug efflux pump AcrB of Escherichia coli is crucial for drug transport as a probable component of the proton relay network.
    Takatsuka Y; Nikaido H
    J Bacteriol; 2006 Oct; 188(20):7284-9. PubMed ID: 17015667
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct interaction of multidrug efflux transporter AcrB and outer membrane channel TolC detected via site-directed disulfide cross-linking.
    Tamura N; Murakami S; Oyama Y; Ishiguro M; Yamaguchi A
    Biochemistry; 2005 Aug; 44(33):11115-21. PubMed ID: 16101295
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multidrug efflux transporter, AcrB--the pumping mechanism.
    Murakami S
    Curr Opin Struct Biol; 2008 Aug; 18(4):459-65. PubMed ID: 18644451
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactions underlying assembly of the Escherichia coli AcrAB-TolC multidrug efflux system.
    Touzé T; Eswaran J; Bokma E; Koronakis E; Hughes C; Koronakis V
    Mol Microbiol; 2004 Jul; 53(2):697-706. PubMed ID: 15228545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms of RND multidrug efflux pumps.
    Nikaido H; Takatsuka Y
    Biochim Biophys Acta; 2009 May; 1794(5):769-81. PubMed ID: 19026770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Drug uptake pathways of multidrug transporter AcrB studied by molecular simulations and site-directed mutagenesis experiments.
    Yao XQ; Kimura N; Murakami S; Takada S
    J Am Chem Soc; 2013 May; 135(20):7474-85. PubMed ID: 23627437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Site-directed mutagenesis reveals putative substrate binding residues in the Escherichia coli RND efflux pump AcrB.
    Bohnert JA; Schuster S; Seeger MA; Fähnrich E; Pos KM; Kern WV
    J Bacteriol; 2008 Dec; 190(24):8225-9. PubMed ID: 18849422
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural and functional aspects of the multidrug efflux pump AcrB.
    Eicher T; Brandstätter L; Pos KM
    Biol Chem; 2009 Aug; 390(8):693-9. PubMed ID: 19453279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional rotation induced by alternating protonation states in the multidrug transporter AcrB: all-atom molecular dynamics simulations.
    Yamane T; Murakami S; Ikeguchi M
    Biochemistry; 2013 Oct; 52(43):7648-58. PubMed ID: 24083838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transport of lipophilic carboxylates is mediated by transmembrane helix 2 in multidrug transporter AcrB.
    Oswald C; Tam HK; Pos KM
    Nat Commun; 2016 Dec; 7():13819. PubMed ID: 27982032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Constant pH Molecular Dynamics Reveals How Proton Release Drives the Conformational Transition of a Transmembrane Efflux Pump.
    Yue Z; Chen W; Zgurskaya HI; Shen J
    J Chem Theory Comput; 2017 Dec; 13(12):6405-6414. PubMed ID: 29117682
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ligand-binding prediction in the resistance-nodulation-cell division (RND) proteins.
    Hernandez-Mendoza A; Quinto C; Segovia L; Perez-Rueda E
    Comput Biol Chem; 2007 Apr; 31(2):115-23. PubMed ID: 17416336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of AcrB and AcrB/DARPin ligand complexes by LILBID MS.
    Brandstätter L; Sokolova L; Eicher T; Seeger MA; Briand C; Cha HJ; Cernescu M; Bohnert J; Kern WV; Brutschy B; Pos KM
    Biochim Biophys Acta; 2011 Sep; 1808(9):2189-96. PubMed ID: 21616055
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chimeric analysis of AcrA function reveals the importance of its C-terminal domain in its interaction with the AcrB multidrug efflux pump.
    Elkins CA; Nikaido H
    J Bacteriol; 2003 Sep; 185(18):5349-56. PubMed ID: 12949086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic evidence for functional interactions between TolC and AcrA proteins of a major antibiotic efflux pump of Escherichia coli.
    Gerken H; Misra R
    Mol Microbiol; 2004 Nov; 54(3):620-31. PubMed ID: 15491355
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A model of a transmembrane drug-efflux pump from Gram-negative bacteria.
    Fernandez-Recio J; Walas F; Federici L; Venkatesh Pratap J; Bavro VN; Miguel RN; Mizuguchi K; Luisi B
    FEBS Lett; 2004 Dec; 578(1-2):5-9. PubMed ID: 15581607
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.