These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 19425603)

  • 21. Theoretical characterization on the size-dependent electron and hole trapping activity of chloride-passivated CdSe nanoclusters.
    Cui Y; Cui X; Zhang L; Xie Y; Yang M
    J Chem Phys; 2018 Apr; 148(13):134308. PubMed ID: 29626869
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of surface chemistry on the binding and electronic coupling of CdSe quantum dots to single crystal TiO2 surfaces.
    Sambur JB; Riha SC; Choi D; Parkinson BA
    Langmuir; 2010 Apr; 26(7):4839-47. PubMed ID: 20108975
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ligands Slow Down Pure-Dephasing in Semiconductor Quantum Dots.
    Liu J; Kilina SV; Tretiak S; Prezhdo OV
    ACS Nano; 2015 Sep; 9(9):9106-16. PubMed ID: 26284384
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A DFT/TDDFT study on the optoelectronic properties of the amine-capped magic (CdSe)13 nanocluster.
    Azpiroz JM; Matxain JM; Infante I; Lopez X; Ugalde JM
    Phys Chem Chem Phys; 2013 Jul; 15(26):10996-1005. PubMed ID: 23712668
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Controlling the electronic coupling between CdSe quantum dots and thiol capping ligands via pH and ligand selection.
    Liang Y; Thorne JE; Parkinson BA
    Langmuir; 2012 Jul; 28(30):11072-7. PubMed ID: 22738349
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhancing the photoluminescence of polymer-stabilized CdSe/CdS/ZnS core/shell/shell and CdSe/ZnS core/shell quantum dots in water through a chemical-activation approach.
    Wang M; Zhang M; Qian J; Zhao F; Shen L; Scholes GD; Winnik MA
    Langmuir; 2009 Oct; 25(19):11732-40. PubMed ID: 19788225
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Determination of band structure parameters and the quasi-particle gap of CdSe quantum dots by cyclic voltammetry.
    Inamdar SN; Ingole PP; Haram SK
    Chemphyschem; 2008 Dec; 9(17):2574-9. PubMed ID: 18956405
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Surface coating directed cellular delivery of TAT-functionalized quantum dots.
    Wei Y; Jana NR; Tan SJ; Ying JY
    Bioconjug Chem; 2009 Sep; 20(9):1752-8. PubMed ID: 19681598
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Photoexcited electron and hole dynamics in semiconductor quantum dots: phonon-induced relaxation, dephasing, multiple exciton generation and recombination.
    Hyeon-Deuk K; Prezhdo OV
    J Phys Condens Matter; 2012 Sep; 24(36):363201. PubMed ID: 22906924
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Size-dependent valence and conduction band-edge energies of semiconductor nanocrystals.
    Jasieniak J; Califano M; Watkins SE
    ACS Nano; 2011 Jul; 5(7):5888-902. PubMed ID: 21662980
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optical Properties of Strongly Coupled Quantum Dot-Ligand Systems.
    Frederick MT; Amin VA; Weiss EA
    J Phys Chem Lett; 2013 Feb; 4(4):634-40. PubMed ID: 26281879
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Breaking the phonon bottleneck in PbSe and CdSe quantum dots: time-domain density functional theory of charge carrier relaxation.
    Kilina SV; Kilin DS; Prezhdo OV
    ACS Nano; 2009 Jan; 3(1):93-9. PubMed ID: 19206254
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The effect of nanocrystal surface structure on the luminescence properties: photoemission study of HF-etched InP nanocrystals.
    Adam S; Talapin DV; Borchert H; Lobo A; McGinley C; de Castro AR; Haase M; Weller H; Möller T
    J Chem Phys; 2005 Aug; 123(8):084706. PubMed ID: 16164320
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural and optical properties of passivated silicon nanoclusters with different shapes: a theoretical investigation.
    Wang BC; Chou YM; Deng JP; Dung YT
    J Phys Chem A; 2008 Jul; 112(28):6351-7. PubMed ID: 18570356
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Strong electronic coupling in two-dimensional assemblies of colloidal PbSe quantum dots.
    Williams KJ; Tisdale WA; Leschkies KS; Haugstad G; Norris DJ; Aydil ES; Zhu XY
    ACS Nano; 2009 Jun; 3(6):1532-8. PubMed ID: 19456114
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lead-poisoned zinc fingers: quantum mechanical exploration of structure, coordination, and electronic excitations.
    Jarzecki AA
    Inorg Chem; 2007 Sep; 46(18):7509-21. PubMed ID: 17676837
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of surface-passivating ligands and ultrasmall CdSe nanocrystal size on the delocalization of exciton confinement.
    Teunis MB; Dolai S; Sardar R
    Langmuir; 2014 Jul; 30(26):7851-8. PubMed ID: 24926916
    [TBL] [Abstract][Full Text] [Related]  

  • 38. p-Type PbSe and PbS quantum dot solids prepared with short-chain acids and diacids.
    Zarghami MH; Liu Y; Gibbs M; Gebremichael E; Webster C; Law M
    ACS Nano; 2010 Apr; 4(4):2475-85. PubMed ID: 20359235
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantification of the size-dependent energy gap of individual CdSe quantum dots by valence electron energy-loss spectroscopy.
    Erni R; Browning ND
    Ultramicroscopy; 2007; 107(2-3):267-73. PubMed ID: 16996213
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Model study of coherent quantum dynamics of hole states in functionalized semiconductor nanostructures.
    Rego LG; Abuabara SG; Batista VS
    J Chem Phys; 2005 Apr; 122(15):154709. PubMed ID: 15945658
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.