These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 19425635)

  • 1. Absolute calibration of hydrophones immersed in sandy sediment.
    Robb GB; Robinson SP; Theobald PD; Hayman G; Humphrey VF; Leighton TG; Wang LS; Dix JK; Best AI
    J Acoust Soc Am; 2009 May; 125(5):2918-27. PubMed ID: 19425635
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extending the frequency range of the National Physical Laboratory primary standard laser interferometer for hydrophone calibrations to 80 MHz.
    Esward TJ; Robinson SP
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(3):737-44. PubMed ID: 18238474
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interlaboratory evaluation of hydrophone sensitivity calibration from 0.1 to 2 MHz via time delay spectrometry.
    Harris GR; Gammell PM; Lewin PA; Radulescu EG
    Ultrasonics; 2004 Apr; 42(1-9):349-53. PubMed ID: 15047310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Finite element modelling of dense and porous piezoceramic disc hydrophones.
    Ramesh R; Kara H; Bowen CR
    Ultrasonics; 2005 Jan; 43(3):173-81. PubMed ID: 15556652
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonlinear parameter estimation in water-saturated sandy sediment with difference frequency acoustic wave.
    Kim BN; Yoon SW
    Ultrasonics; 2009 May; 49(4-5):438-45. PubMed ID: 19138778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Primary reciprocity-based method for calibration of hydrophone magnitude and phase sensitivity: complete tests at frequencies from 1 to 7 MHz.
    Oliveira EG; Costa-Felix RP; Machado JC
    Ultrasonics; 2015 Apr; 58():87-95. PubMed ID: 25578371
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of two methods for phase response calibration of hydrophones in the frequency range 10-400 kHz.
    Hayman G; Wang Y; Robinson S
    J Acoust Soc Am; 2013 Feb; 133(2):750-9. PubMed ID: 23363094
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calibration of hydrophones based on reciprocity and time delay spectrometry.
    Ludwig G; Brendel K
    IEEE Trans Ultrason Ferroelectr Freq Control; 1988; 35(2):168-74. PubMed ID: 18290143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrasonic needle hydrophone calibration in air by a parabolic off-axis mirror focused beam using three-transducer reciprocity.
    Svilainis L; Chaziachmetovas A; Kaskonas P; Gomez Alvarez-Arenas TE
    Ultrasonics; 2023 Aug; 133():107025. PubMed ID: 37159982
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calibration of miniature medical ultrasonic hydrophones for frequencies in the range 100 to 500 kHz using an ultrasonically absorbing waveguide.
    Rajagopal S; Zeqiri B; Gélat PN
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 May; 61(5):765-78. PubMed ID: 24803021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of finite aperture and frequency response of ultrasonic hydrophone probes on the determination of acoustic output.
    Radulescu EG; Lewin PA; Wójcik J; Nowicki A; Berger WA
    Ultrasonics; 2004 Apr; 42(1-9):367-72. PubMed ID: 15047313
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of a polymer film optical fiber hydrophone for use in the range 1 to 20 MHz: a comparison with PVDF needle and membrane hydrophones.
    Beard PC; Hurrell AM; Mills TN
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(1):256-64. PubMed ID: 18238538
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Primary calibration of hydrophones with extended frequency range 1 to 70 MHz using optical interferometry.
    Koch C; Molkenstruck W
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(5):1303-14. PubMed ID: 18244323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the Importance of Consistent Insonation Conditions During Hydrophone Calibration and Use.
    Rajagopal S; Robinson SP; Ablitt J; Miloro P; Wang L; Zeqiri B; Hurrell A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2023 Feb; 70(2):120-127. PubMed ID: 36094977
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a PVDF membrane hydrophone for use in air-coupled ultrasonic transducer calibration.
    Galbraith W; Hayward G
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(6):1549-58. PubMed ID: 18250002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of two calibration methods for ultrasonic hydrophones.
    Gloersen WB; Harris GR; Stewart HF; Lewin PA
    Ultrasound Med Biol; 1982; 8(5):545-8. PubMed ID: 7147468
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel method for determining calibration and behavior of PVDF ultrasonic hydrophone probes in the frequency range up to 100 MHz.
    Bleeker HJ; Lewin PA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(6):1354-62. PubMed ID: 18238681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Primary calibration of ultrasonic hydrophone using optical interferometry.
    Bacon DR
    IEEE Trans Ultrason Ferroelectr Freq Control; 1988; 35(2):152-61. PubMed ID: 18290141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acousto-optic, point receiver hydrophone probe for operation up to 100 MHz.
    Lewin PA; Mu C; Umchid S; Daryoush A; El-Sherif M
    Ultrasonics; 2005 Dec; 43(10):815-21. PubMed ID: 16054665
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-frequency geoacoustic model for the effective properties of sandy seabottoms.
    Zhou JX; Zhang XZ; Knobles DP
    J Acoust Soc Am; 2009 May; 125(5):2847-66. PubMed ID: 19425630
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.