These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 19425635)

  • 21. A multiple-frequency hydrophone calibration technique.
    Smith RA; Bacon DR
    J Acoust Soc Am; 1990 May; 87(5):2231-43. PubMed ID: 2189922
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Voltage sensitivity response of ultrasonic hydrophones in the frequency range 0.25-2.5 MHz.
    Lewin PA; Bautista R; Devaraju V
    Ultrasound Med Biol; 1999 Sep; 25(7):1131-7. PubMed ID: 10574344
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Determination of sensitivity versus frequency characteristics of miniature ultrasonic hydrophones below 1 MHz using planar scanning technique.
    Devaraju V; Lewin PA; Bleeker H
    J Ultrasound Med; 2002 Mar; 21(3):261-8. PubMed ID: 11883536
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development of disposable membrane hydrophones for a frequency range from 1MHz to 10MHz.
    Lee JW; Ohm WS; Kim YT
    Ultrasonics; 2017 Nov; 81():50-58. PubMed ID: 28578220
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Practicalities of Obtaining and Using Hydrophone Calibration Data to Derive Pressure Waveforms.
    Hurrell AM; Rajagopal S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Jan; 64(1):126-140. PubMed ID: 27479961
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sensitivity of ultrasonic hydrophone probes below 1 MHz.
    Lewin PA; Lypacewicz G; Bautista R; Devaraju V
    Ultrasonics; 2000 Mar; 38(1-8):135-9. PubMed ID: 10829645
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Comparison of Different Calibration Techniques for Hydrophones Used in Medical Ultrasonic Field Measurement.
    Weber M; Wilkens V
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 May; 68(5):1919-1929. PubMed ID: 33360988
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interlaboratory comparison of hydrophone calibrations.
    Preston RC; Bacon DR; Corbett SS; Harris GR; Lewin PA; McGregor JA; O'Brien WR; Szabo TL
    IEEE Trans Ultrason Ferroelectr Freq Control; 1988; 35(2):206-13. PubMed ID: 18290146
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Determination of sewer roughness and sediment properties using acoustic techniques.
    Horoshenkov KV; Ashley RN; Blanksby J
    Water Sci Technol; 2003; 47(2):87-93. PubMed ID: 12636066
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Estimating marine sediment attenuation at low frequency with a vertical line array.
    Jiang YM; Chapman NR; Yang K; Ma Y
    J Acoust Soc Am; 2009 Apr; 125(4):EL158-63. PubMed ID: 19354355
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Time delay spectrometry for hydrophone calibrations below 1 MHz.
    Gammell PM; Harris GR
    J Acoust Soc Am; 1999 Nov; 106(5):L41-6. PubMed ID: 10573913
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Observations of the R reflector and sediment interface reflection at the Shallow Water '06 Central Site.
    Choi JW; Dahl PH; Goff JA
    J Acoust Soc Am; 2008 Sep; 124(3):EL128-34. PubMed ID: 19045554
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cymbal piezoelectric composite underwater acoustic transducer.
    Li D; Wu M; Oyang P; Xu X
    Ultrasonics; 2006 Dec; 44 Suppl 1():e685-7. PubMed ID: 16793099
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Determination of the receiving range of sound field measurements in cavitating media.
    Koch C; Jenderka KV
    Ultrason Sonochem; 2008 Jul; 15(5):846-52. PubMed ID: 18065253
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nominal Versus Actual Spatial Resolution: Comparison of Directivity and Frequency-Dependent Effective Sensitive Element Size for Membrane, Needle, Capsule, and Fiber-Optic Hydrophones.
    Wear KA; Shah A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2023 Feb; 70(2):112-119. PubMed ID: 36178990
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Development of the Differential MEMS Vector Hydrophone.
    Zhang G; Liu M; Shen N; Wang X; Zhang W
    Sensors (Basel); 2017 Jun; 17(6):. PubMed ID: 28594384
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Correction for frequency-dependent hydrophone response to nonlinear pressure waves using complex deconvolution and rarefactional filtering: application with fiber optic hydrophones.
    Wear K; Liu Y; Gammell PM; Maruvada S; Harris GR
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Jan; 62(1):152-64. PubMed ID: 25585399
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Three-dimensional seismic array characterization study: experiment and modeling.
    Tashmukhambetov AM; Ioup GE; Ioup JW; Sidorovskaia NA; Newcomb JJ
    J Acoust Soc Am; 2008 Jun; 123(6):4094-108. PubMed ID: 18537361
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Estimating acoustic peak pressure generated by ultrasound transducers from harmonic distortion level measurement.
    Matte GM; Borsboom JM; van Neer P; de Jong N
    Ultrasound Med Biol; 2008 Sep; 34(9):1528-32. PubMed ID: 18450363
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Absolute measurements of ultrasonic pressure by using high magnetic fields.
    Sharf Y; Clement GT; Hynynen K
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(6):1504-11. PubMed ID: 18244347
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.