BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 19425638)

  • 1. Correction for partial reflection in ultrasonic attenuation measurements using contact transducers.
    Treiber M; Kim JY; Jacobs LJ; Qu J
    J Acoust Soc Am; 2009 May; 125(5):2946-53. PubMed ID: 19425638
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Attenuation coefficient estimation using experimental diffraction corrections with multiple interface reflections.
    Lerch TP; Cepel R; Neal SP
    Ultrasonics; 2006 Jan; 44(1):83-92. PubMed ID: 16213537
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acoustic method for obtaining the pressure reflection coefficient using a half-wave layer.
    Liu JX; Wang ZQ; Li GF; Wang NH
    Ultrasonics; 2011 Apr; 51(3):359-68. PubMed ID: 21134687
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acoustic methods for obtaining the pressure reflection coefficient from a buffer rod based measurement cell.
    Bjørndal E; Frøysa KE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Aug; 55(8):1781-93. PubMed ID: 18986921
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterizing ultra-thin matching layers of high-frequency ultrasonic transducer based on impedance matching principle.
    Wang H; Cao W
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Feb; 51(2):211-5. PubMed ID: 15055811
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diffraction correction methods for insertion ultrasound attenuation estimation.
    Xu W; Kaufman JJ
    IEEE Trans Biomed Eng; 1993 Jun; 40(6):563-70. PubMed ID: 8262538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the validity and improvement of the ultrasonic pulse-echo immersion technique to measure real attenuation.
    Goñi MA; Rousseau CE
    Ultrasonics; 2014 Feb; 54(2):544-50. PubMed ID: 23998204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrasonic characterization of a fluid layer using a broadband transducer.
    Samet N; Maréchal P; Duflo H
    Ultrasonics; 2012 Mar; 52(3):427-34. PubMed ID: 22071268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An ultrasonic methodology for determining the mechanical and geometrical properties of a thin layer using a deconvolution technique.
    Chen J; Bai X; Yang K; Ju BF
    Ultrasonics; 2013 Sep; 53(7):1377-83. PubMed ID: 23684471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrasonic viscosity measurement using the shear-wave reflection coefficient with a novel signal processing technique.
    Franco EE; Adamowski JC; Buiochi F
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 May; 57(5):1133-9. PubMed ID: 20442023
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel approach to acoustic liquid density measurements using a buffer rod based measuring cell.
    Bjørndal E; Frøysa KE; Engeseth SA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Aug; 55(8):1794-808. PubMed ID: 18986922
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational method to determine reflected ultrasonic signals from arbitrary-geometry targets.
    Buiochi F; Buiochi EB; Formigoni PO; Adamowski JC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Apr; 57(4):986-94. PubMed ID: 20378462
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative in vivo measurements of inner ear tissue resistivities: I. In vitro characterization.
    Suesserman MF; Spelman FA
    IEEE Trans Biomed Eng; 1993 Oct; 40(10):1032-47. PubMed ID: 8294128
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurements of velocity and attenuation of leaky waves using an ultrasonic array.
    Titov S; Maev R; Bogachenkov A
    Ultrasonics; 2006 Feb; 44(2):182-7. PubMed ID: 16376398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Angular measurement of acoustic reflection coefficients by the inversion of V(z, t) data with high frequency time-resolved acoustic microscopy.
    Chen J; Bai X; Yang K; Ju BF
    Rev Sci Instrum; 2012 Jan; 83(1):014901. PubMed ID: 22299973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using ultrasonic wave reflection to measure solution properties.
    Chung CW; Popovics JS; Struble LJ
    Ultrason Sonochem; 2010 Jan; 17(1):266-72. PubMed ID: 19692285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimation of diffraction effect in ultrasonic attenuation by through-transmission substitution technique.
    Xing G; Yang P; He L
    Ultrasonics; 2013 Apr; 53(4):825-30. PubMed ID: 23290825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement method of particle concentration and acoustic properties in suspension using a focused ultrasonic impulse radiated from a plano-concave transducer.
    Kobayashi T; Tai H; Kato S
    Ultrasonics; 2006 Dec; 44 Suppl 1():e491-6. PubMed ID: 16793082
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Steady state spherically focused, circular aperture beam patterns.
    Goldstein A
    Ultrasound Med Biol; 2006 Oct; 32(10):1441-58. PubMed ID: 17045863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the measurement of frequency-dependent ultrasonic attenuation in strongly heterogeneous materials.
    Molero M; Segura I; Aparicio S; Hernández MG; Izquierdo MA
    Ultrasonics; 2010 Aug; 50(8):824-8. PubMed ID: 20537363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.