These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 19425661)

  • 1. Sensitivity of the human auditory system to temporal fine structure at high frequencies.
    Moore BC; Sek A
    J Acoust Soc Am; 2009 May; 125(5):3186-93. PubMed ID: 19425661
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discrimination of complex tones with unresolved components using temporal fine structure information.
    Moore BC; Hopkins K; Cuthbertson S
    J Acoust Soc Am; 2009 May; 125(5):3214-22. PubMed ID: 19425664
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a fast method for determining sensitivity to temporal fine structure.
    Moore BC; Sek A
    Int J Audiol; 2009 Apr; 48(4):161-71. PubMed ID: 19085395
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of level on the discrimination of harmonic and frequency-shifted complex tones at high frequencies.
    Moore BC; Sek A
    J Acoust Soc Am; 2011 May; 129(5):3206-12. PubMed ID: 21568422
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of excitation-pattern cues in the detection of frequency shifts in bandpass-filtered complex tones.
    Marmel F; Plack CJ; Hopkins K; Carlyon RP; Gockel HE; Moore BC
    J Acoust Soc Am; 2015 May; 137(5):2687-97. PubMed ID: 25994700
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Implications of within-fiber temporal coding for perceptual studies of F0 discrimination and discrimination of harmonic and inharmonic tone complexes.
    Kale S; Micheyl C; Heinz MG
    J Assoc Res Otolaryngol; 2014 Jun; 15(3):465-82. PubMed ID: 24658856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human Frequency Following Responses to Vocoded Speech.
    Ananthakrishnan S; Luo X; Krishnan A
    Ear Hear; 2017; 38(5):e256-e267. PubMed ID: 28362674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of sensorineural hearing loss on temporal coding of harmonic and inharmonic tone complexes in the auditory nerve.
    Kale S; Micheyl C; Heinz MG
    Adv Exp Med Biol; 2013; 787():109-18. PubMed ID: 23716215
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of excitation-pattern, temporal-fine-structure, and envelope cues in the discrimination of complex tones.
    Jackson HM; Moore BC
    J Acoust Soc Am; 2014 Mar; 135(3):1356-70. PubMed ID: 24606274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pitch perception of concurrent harmonic tones with overlapping spectra.
    Wang J; Baer T; Glasberg BR; Stone MA; Ye D; Moore BC
    J Acoust Soc Am; 2012 Jul; 132(1):339-56. PubMed ID: 22779482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Moderate cochlear hearing loss leads to a reduced ability to use temporal fine structure information.
    Hopkins K; Moore BC
    J Acoust Soc Am; 2007 Aug; 122(2):1055-68. PubMed ID: 17672653
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Can temporal fine structure represent the fundamental frequency of unresolved harmonics?
    Oxenham AJ; Micheyl C; Keebler MV
    J Acoust Soc Am; 2009 Apr; 125(4):2189-99. PubMed ID: 19354395
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discrimination of the fundamental frequency of complex tones with fixed and shifting spectral envelopes by normally hearing and hearing-impaired subjects.
    Moore BC; Moore GA
    Hear Res; 2003 Aug; 182(1-2):153-63. PubMed ID: 12948610
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Frequency discrimination of complex tones; assessing the role of component resolvability and temporal fine structure.
    Moore BC; Glasberg BR; Flanagan HJ; Adams J
    J Acoust Soc Am; 2006 Jan; 119(1):480-90. PubMed ID: 16454302
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electric and acoustic harmonic integration predicts speech-in-noise performance in hybrid cochlear implant users.
    Bonnard D; Schwalje A; Gantz B; Choi I
    Hear Res; 2018 Sep; 367():223-230. PubMed ID: 29980380
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The dominant region for the pitch of complex tones with low fundamental frequencies.
    Jackson HM; Moore BC
    J Acoust Soc Am; 2013 Aug; 134(2):1193-204. PubMed ID: 23927118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of age and hearing loss on interaural phase difference discrimination.
    King A; Hopkins K; Plack CJ
    J Acoust Soc Am; 2014 Jan; 135(1):342-51. PubMed ID: 24437774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Auditory cortex responses to interaural time differences in the envelope of low-frequency sound, recorded with MEG in young and older listeners.
    Ross B
    Hear Res; 2018 Dec; 370():22-39. PubMed ID: 30265860
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Frequency discrimination of complex tones by hearing-impaired subjects: Evidence for loss of ability to use temporal fine structure.
    Moore BC; Glasberg BR; Hopkins K
    Hear Res; 2006 Dec; 222(1-2):16-27. PubMed ID: 17030477
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of temporal fine structure information for the low pitch of high-frequency complex tones.
    Santurette S; Dau T
    J Acoust Soc Am; 2011 Jan; 129(1):282-92. PubMed ID: 21303009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.