These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 19425671)

  • 1. Closed phase covariance analysis based on constrained linear prediction for glottal inverse filtering.
    Alku P; Magi C; Yrttiaho S; Bäckström T; Story B
    J Acoust Soc Am; 2009 May; 125(5):3289-305. PubMed ID: 19425671
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glottal inverse filtering with the closed-phase covariance analysis utilizing mathematical constraints in modelling of the vocal tract.
    Alku P; Magi C; Bäckström T
    Logoped Phoniatr Vocol; 2009 Dec; 34(4):200-9. PubMed ID: 19415566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measuring and modeling vocal source-tract interaction.
    Childers DG; Wong CF
    IEEE Trans Biomed Eng; 1994 Jul; 41(7):663-71. PubMed ID: 7927387
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formant frequency estimation of high-pitched vowels using weighted linear prediction.
    Alku P; Pohjalainen J; Vainio M; Laukkanen AM; Story BH
    J Acoust Soc Am; 2013 Aug; 134(2):1295-313. PubMed ID: 23927127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TKK Aparat: an environment for voice inverse filtering and parameterization.
    Airas M
    Logoped Phoniatr Vocol; 2008; 33(1):49-64. PubMed ID: 18344143
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of Glottal Inverse Filtering in the Presence of Source-Filter Interaction.
    Palaparthi A; Titze IR
    Speech Commun; 2020 Oct; 123():98-108. PubMed ID: 32921855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How the peak glottal area affects linear predictive coding-based formant estimates of vowels.
    Birkholz P; Gabriel F; Kürbis S; Echternach M
    J Acoust Soc Am; 2019 Jul; 146(1):223. PubMed ID: 31370636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. What do male singers mean by modal and falsetto register? An investigation of the glottal voice source.
    Salomão GL; Sundberg J
    Logoped Phoniatr Vocol; 2009; 34(2):73-83. PubMed ID: 19363740
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Perceived loudness of speech based on the characteristics of glottal excitation source.
    Seshadri G; Yegnanarayana B
    J Acoust Soc Am; 2009 Oct; 126(4):2061-71. PubMed ID: 19813815
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct speech feature estimation using an iterative EM algorithm for vocal fold pathology detection.
    Gavidia-Ceballos L; Hansen JH
    IEEE Trans Biomed Eng; 1996 Apr; 43(4):373-83. PubMed ID: 8626186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-speed registration of phonation-related glottal area variation during artificial lengthening of the vocal tract.
    Laukkanen AM; Pulakka H; Alku P; Vilkman E; Hertegård S; Lindestad PA; Larsson H; Granqvist S
    Logoped Phoniatr Vocol; 2007; 32(4):157-64. PubMed ID: 17917980
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inverse filtering of nasalized vowels using synthesized speech.
    Gobl C; Mahshie J
    J Voice; 2013 Mar; 27(2):155-69. PubMed ID: 23231805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of the voice source from speech pressure signals: evaluation of an inverse filtering technique using physical modelling of voice production.
    Alku P; Story B; Airas M
    Folia Phoniatr Logop; 2006; 58(2):102-13. PubMed ID: 16479132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental evaluation of inverse filtering using physical systems with known glottal flow and tract characteristics.
    Chu DT; Li K; Epps J; Smith J; Wolfe J
    J Acoust Soc Am; 2013 May; 133(5):EL358-62. PubMed ID: 23656094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of Glottal Inverse Filtering Algorithms Using a Physiologically Based Articulatory Speech Synthesizer.
    Chien YR; Mehta DD; Guðnason J; Zañartu M; Quatieri TF
    IEEE/ACM Trans Audio Speech Lang Process; 2017 Aug; 25(8):1718-1730. PubMed ID: 34268444
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contributions of the glottal source and vocal tract cues to emotional vowel perception in the valence-arousal space.
    Li Y; Li J; Akagi M
    J Acoust Soc Am; 2018 Aug; 144(2):908. PubMed ID: 30180717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inverse filtering applied to upper airway sounds.
    Plante F; Kessler H; Sun XQ; Cheetham BM; Earis JE
    Technol Health Care; 1998 Jun; 6(1):23-32. PubMed ID: 9754681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analytic representation of volume flow as a function of geometry and pressure in a static physical model of the glottis.
    Fulcher LP; Scherer RC; Zhai G; Zhu Z
    J Voice; 2006 Dec; 20(4):489-512. PubMed ID: 16434169
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vocal tract length perturbation and its application to male-female vocal tract shape conversion.
    Adachi S; Takemoto H; Kitamura T; Mokhtari P; Honda K
    J Acoust Soc Am; 2007 Jun; 121(6):3874-85. PubMed ID: 17552734
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical simulation and experimental validation of inverse quasi-one-dimensional steady and unsteady glottal flow models.
    Cisonni J; Van Hirtum A; Pelorson X; Willems J
    J Acoust Soc Am; 2008 Jul; 124(1):535-45. PubMed ID: 18646996
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.