These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 19426306)

  • 1. Nanoparticles for cancer treatment: role of heat transfer.
    Avedisian CT; Cavicchi RE; McEuen PL; Zhou X
    Ann N Y Acad Sci; 2009 Apr; 1161():62-73. PubMed ID: 19426306
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intracellular hyperthermia: Nanobubbles and their biomedical applications.
    Wen D
    Int J Hyperthermia; 2009 Nov; 25(7):533-41. PubMed ID: 19848616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical study on the multi-region bio-heat equation to model magnetic fluid hyperthermia (MFH) using low Curie temperature nanoparticles.
    Zhang C; Johnson DT; Brazel CS
    IEEE Trans Nanobioscience; 2008 Dec; 7(4):267-75. PubMed ID: 19203870
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical investigation of heating of a gold nanoparticle and the surrounding microenvironment by nanosecond laser pulses for nanomedicine applications.
    Sassaroli E; Li KC; O'Neill BE
    Phys Med Biol; 2009 Sep; 54(18):5541-60. PubMed ID: 19717888
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal physics in carbon nanotube growth kinetics.
    Louchev OA; Kanda H; Rosén A; Bolton K
    J Chem Phys; 2004 Jul; 121(1):446-56. PubMed ID: 15260566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast transient thermal analysis of gold nanoparticles in tissue-like medium.
    Liu C; Li BQ; Mi CC
    IEEE Trans Nanobioscience; 2009 Sep; 8(3):271-80. PubMed ID: 20051339
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heat generation by optically and thermally interacting aggregates of gold nanoparticles under illumination.
    Zeng N; Murphy AB
    Nanotechnology; 2009 Sep; 20(37):375702. PubMed ID: 19706944
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photothermal lens detection of gold nanoparticles: theory and experiments.
    Brusnichkin AV; Nedosekin DA; Proskurnin MA; Zharov VP
    Appl Spectrosc; 2007 Nov; 61(11):1191-201. PubMed ID: 18028698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoshell-enabled photothermal cancer therapy: impending clinical impact.
    Lal S; Clare SE; Halas NJ
    Acc Chem Res; 2008 Dec; 41(12):1842-51. PubMed ID: 19053240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement in treatment planning for magnetic nanoparticle hyperthermia: optimization of the heat absorption pattern.
    Salloum M; Ma R; Zhu L
    Int J Hyperthermia; 2009 Jun; 25(4):309-21. PubMed ID: 19670098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cancer-cell targeting and photoacoustic therapy using carbon nanotubes as "bomb" agents.
    Kang B; Yu D; Dai Y; Chang S; Chen D; Ding Y
    Small; 2009 Jun; 5(11):1292-301. PubMed ID: 19274646
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laser-induced explosion of gold nanoparticles: potential role for nanophotothermolysis of cancer.
    Letfullin RR; Joenathan C; George TF; Zharov VP
    Nanomedicine (Lond); 2006 Dec; 1(4):473-80. PubMed ID: 17716149
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and characterization of Au-attached single-walled carbon nanotube bundles.
    Jeong GH; Suzuki S; Kobayashi Y
    Nanotechnology; 2009 Jul; 20(28):285708. PubMed ID: 19550010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Nanoparticle-mediated endostatin gene therapy targeting hepatocellular carcinoma utilizing heat-inducible promoter].
    Zhou JJ; Chen RF; Li ZH; Zhou QB; Tang QB; He XY; Lu HW; Guo N
    Zhonghua Yi Xue Za Zhi; 2009 Mar; 89(12):795-9. PubMed ID: 19595115
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spray pyrolysis synthesis of ZnS nanoparticles from a single-source precursor.
    Liu S; Zhang H; Swihart MT
    Nanotechnology; 2009 Jun; 20(23):235603. PubMed ID: 19451680
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of thermal energy absorbed in unit time on thermal lesion of the skin. (Preliminary report).
    Novák J; Lepenye G; Liszkai L; Argay G; Guba I
    Acta Chir Acad Sci Hung; 1975; 16(3):219-23. PubMed ID: 1229799
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Narrowing SWNT diameter distribution using size-separated ferritin-based Fe catalysts.
    Durrer L; Greenwald J; Helbling T; Muoth M; Riek R; Hierold C
    Nanotechnology; 2009 Sep; 20(35):355601. PubMed ID: 19671985
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analytical thermal-optic model for laser heating of biological tissue using the hyperbolic heat transfer equation.
    Trujillo M; Rivera MJ; López Molina JA; Berjano EJ
    Math Med Biol; 2009 Sep; 26(3):187-200. PubMed ID: 19234093
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-time-scale heat transfer modeling of turbid tissues exposed to short-pulsed irradiations.
    Kim K; Guo Z
    Comput Methods Programs Biomed; 2007 May; 86(2):112-23. PubMed ID: 17335934
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Morphology and electronic structure of the oxide shell on the surface of iron nanoparticles.
    Wang C; Baer DR; Amonette JE; Engelhard MH; Antony J; Qiang Y
    J Am Chem Soc; 2009 Jul; 131(25):8824-32. PubMed ID: 19496564
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.