BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 19426318)

  • 1. Orientation and related buoyancy effects in low-velocity flow boiling.
    Merte H; Schultz WW; Liu Q; Keller RB
    Ann N Y Acad Sci; 2009 Apr; 1161():202-10. PubMed ID: 19426318
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Criteria for approximating certain microgravity flow boiling characteristics in Earth gravity.
    Merte H; Park J; Shultz WW; Keller RB
    Ann N Y Acad Sci; 2002 Oct; 974():481-503. PubMed ID: 12446343
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Some parameter boundaries governing microgravity pool boiling modes.
    Merte H
    Ann N Y Acad Sci; 2006 Sep; 1077():629-49. PubMed ID: 17124149
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Momentum effects in steady nucleate pool boiling during microgravity.
    Merte H
    Ann N Y Acad Sci; 2004 Nov; 1027():196-216. PubMed ID: 15644357
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heat transfer and bubble detachment in subcooled pool boiling from a downward-facing microheater array in a nonuniform electric field.
    Liu Z; Herman C; Kim J
    Ann N Y Acad Sci; 2009 Apr; 1161():182-91. PubMed ID: 19426316
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms of steady-state nucleate pool boiling in microgravity.
    Lee HS
    Ann N Y Acad Sci; 2002 Oct; 974():447-62. PubMed ID: 12446341
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A study of subcooled pool boiling of water: contact area of boiling bubbles with a heating surface during a heating process.
    Suzuki K; Takahashi S; Ohta H
    Ann N Y Acad Sci; 2004 Nov; 1027():259-68. PubMed ID: 15644360
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical simulation and experimental validation of the dynamics of multiple bubble merger during pool boiling under microgravity conditions.
    Abarajith HS; Dhir VK; Warrier G; Son G
    Ann N Y Acad Sci; 2004 Nov; 1027():235-58. PubMed ID: 15644359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical investigation of bubble-induced Marangoni convection.
    O'Shaughnessy SM; Robinson AJ
    Ann N Y Acad Sci; 2009 Apr; 1161():304-20. PubMed ID: 19426328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acoustic field interaction with a boiling system under terrestrial gravity and microgravity.
    Sitter JS; Snyder TJ; Chung JN; Marston PL
    J Acoust Soc Am; 1998 Nov; 104(5):2561-9. PubMed ID: 9821335
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a high-performance boiling heat exchanger by improved liquid supply to narrow channels.
    Ohta H; Ohno T; Hioki F; Shinmoto Y
    Ann N Y Acad Sci; 2004 Nov; 1027():217-34. PubMed ID: 15644358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of two-phase inlet quality, mass velocity, flow orientation, and heating perimeter on flow boiling in a rectangular channel: Part 1 - Two-phase flow and heat transfer results.
    Kharangate CR; O'Neill LE; Mudawar I
    Int J Heat Mass Transf; 2016 Dec; 103():1261-1279. PubMed ID: 30524139
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microgravity experiments on boiling and applications: research activity of advanced high heat flux cooling technology for electronic devices in Japan.
    Suzuki K; Kawamura H
    Ann N Y Acad Sci; 2004 Nov; 1027():182-95. PubMed ID: 15644356
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-bubble water boiling on small heater under Earth's and low gravity.
    Elele E; Shen Y; Tang J; Lei Q; Khusid B
    NPJ Microgravity; 2018; 4():21. PubMed ID: 30417085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High heat flux cooling by microbubble emission boiling.
    Suzuki K; Saitoh H; Matsumoto K
    Ann N Y Acad Sci; 2002 Oct; 974():364-77. PubMed ID: 12446336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Swing-like pool boiling on nano-textured surfaces for microgravity applications related to cooling of high-power microelectronics.
    Sinha-Ray S; Zhang W; Stoltz B; Sahu RP; Sinha-Ray S; Yarin AL
    NPJ Microgravity; 2017; 3():9. PubMed ID: 28649631
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure of high-performance evaporators for space application.
    Ohta H; Shinmoto Y; Mizukoshi T; Ishikawa Y
    Ann N Y Acad Sci; 2006 Sep; 1077():668-79. PubMed ID: 17124151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of high-performance cooling devices for space application by using flow boiling in narrow channels.
    Miura S; Inada Y; Shinmoto Y; Ohta H
    Ann N Y Acad Sci; 2009 Apr; 1161():192-201. PubMed ID: 19426317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surfactants for Bubble Removal against Buoyancy.
    Raza MQ; Kumar N; Raj R
    Sci Rep; 2016 Jan; 6():19113. PubMed ID: 26743179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Criticality in the slowed-down boiling crisis at zero gravity.
    Charignon T; Lloveras P; Chatain D; Truskinovsky L; Vives E; Beysens D; Nikolayev VS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):053007. PubMed ID: 26066249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.