These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
278 related articles for article (PubMed ID: 19426318)
1. Orientation and related buoyancy effects in low-velocity flow boiling. Merte H; Schultz WW; Liu Q; Keller RB Ann N Y Acad Sci; 2009 Apr; 1161():202-10. PubMed ID: 19426318 [TBL] [Abstract][Full Text] [Related]
2. Criteria for approximating certain microgravity flow boiling characteristics in Earth gravity. Merte H; Park J; Shultz WW; Keller RB Ann N Y Acad Sci; 2002 Oct; 974():481-503. PubMed ID: 12446343 [TBL] [Abstract][Full Text] [Related]
3. Some parameter boundaries governing microgravity pool boiling modes. Merte H Ann N Y Acad Sci; 2006 Sep; 1077():629-49. PubMed ID: 17124149 [TBL] [Abstract][Full Text] [Related]
4. Momentum effects in steady nucleate pool boiling during microgravity. Merte H Ann N Y Acad Sci; 2004 Nov; 1027():196-216. PubMed ID: 15644357 [TBL] [Abstract][Full Text] [Related]
5. Heat transfer and bubble detachment in subcooled pool boiling from a downward-facing microheater array in a nonuniform electric field. Liu Z; Herman C; Kim J Ann N Y Acad Sci; 2009 Apr; 1161():182-91. PubMed ID: 19426316 [TBL] [Abstract][Full Text] [Related]
6. Mechanisms of steady-state nucleate pool boiling in microgravity. Lee HS Ann N Y Acad Sci; 2002 Oct; 974():447-62. PubMed ID: 12446341 [TBL] [Abstract][Full Text] [Related]
7. A study of subcooled pool boiling of water: contact area of boiling bubbles with a heating surface during a heating process. Suzuki K; Takahashi S; Ohta H Ann N Y Acad Sci; 2004 Nov; 1027():259-68. PubMed ID: 15644360 [TBL] [Abstract][Full Text] [Related]
8. Numerical simulation and experimental validation of the dynamics of multiple bubble merger during pool boiling under microgravity conditions. Abarajith HS; Dhir VK; Warrier G; Son G Ann N Y Acad Sci; 2004 Nov; 1027():235-58. PubMed ID: 15644359 [TBL] [Abstract][Full Text] [Related]
9. Numerical investigation of bubble-induced Marangoni convection. O'Shaughnessy SM; Robinson AJ Ann N Y Acad Sci; 2009 Apr; 1161():304-20. PubMed ID: 19426328 [TBL] [Abstract][Full Text] [Related]
10. Acoustic field interaction with a boiling system under terrestrial gravity and microgravity. Sitter JS; Snyder TJ; Chung JN; Marston PL J Acoust Soc Am; 1998 Nov; 104(5):2561-9. PubMed ID: 9821335 [TBL] [Abstract][Full Text] [Related]
11. Development of a high-performance boiling heat exchanger by improved liquid supply to narrow channels. Ohta H; Ohno T; Hioki F; Shinmoto Y Ann N Y Acad Sci; 2004 Nov; 1027():217-34. PubMed ID: 15644358 [TBL] [Abstract][Full Text] [Related]
12. Effects of two-phase inlet quality, mass velocity, flow orientation, and heating perimeter on flow boiling in a rectangular channel: Part 1 - Two-phase flow and heat transfer results. Kharangate CR; O'Neill LE; Mudawar I Int J Heat Mass Transf; 2016 Dec; 103():1261-1279. PubMed ID: 30524139 [TBL] [Abstract][Full Text] [Related]
13. Microgravity experiments on boiling and applications: research activity of advanced high heat flux cooling technology for electronic devices in Japan. Suzuki K; Kawamura H Ann N Y Acad Sci; 2004 Nov; 1027():182-95. PubMed ID: 15644356 [TBL] [Abstract][Full Text] [Related]
14. Single-bubble water boiling on small heater under Earth's and low gravity. Elele E; Shen Y; Tang J; Lei Q; Khusid B NPJ Microgravity; 2018; 4():21. PubMed ID: 30417085 [TBL] [Abstract][Full Text] [Related]
15. High heat flux cooling by microbubble emission boiling. Suzuki K; Saitoh H; Matsumoto K Ann N Y Acad Sci; 2002 Oct; 974():364-77. PubMed ID: 12446336 [TBL] [Abstract][Full Text] [Related]
16. Swing-like pool boiling on nano-textured surfaces for microgravity applications related to cooling of high-power microelectronics. Sinha-Ray S; Zhang W; Stoltz B; Sahu RP; Sinha-Ray S; Yarin AL NPJ Microgravity; 2017; 3():9. PubMed ID: 28649631 [TBL] [Abstract][Full Text] [Related]
17. Structure of high-performance evaporators for space application. Ohta H; Shinmoto Y; Mizukoshi T; Ishikawa Y Ann N Y Acad Sci; 2006 Sep; 1077():668-79. PubMed ID: 17124151 [TBL] [Abstract][Full Text] [Related]
18. Development of high-performance cooling devices for space application by using flow boiling in narrow channels. Miura S; Inada Y; Shinmoto Y; Ohta H Ann N Y Acad Sci; 2009 Apr; 1161():192-201. PubMed ID: 19426317 [TBL] [Abstract][Full Text] [Related]
19. Surfactants for Bubble Removal against Buoyancy. Raza MQ; Kumar N; Raj R Sci Rep; 2016 Jan; 6():19113. PubMed ID: 26743179 [TBL] [Abstract][Full Text] [Related]
20. Criticality in the slowed-down boiling crisis at zero gravity. Charignon T; Lloveras P; Chatain D; Truskinovsky L; Vives E; Beysens D; Nikolayev VS Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):053007. PubMed ID: 26066249 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]