These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Berry skin development in Norton grape: distinct patterns of transcriptional regulation and flavonoid biosynthesis. Ali MB; Howard S; Chen S; Wang Y; Yu O; Kovacs LG; Qiu W BMC Plant Biol; 2011 Jan; 11():7. PubMed ID: 21219654 [TBL] [Abstract][Full Text] [Related]
4. Metabolite and transcript profiling of berry skin during fruit development elucidates differential regulation between Cabernet Sauvignon and Shiraz cultivars at branching points in the polyphenol pathway. Degu A; Hochberg U; Sikron N; Venturini L; Buson G; Ghan R; Plaschkes I; Batushansky A; Chalifa-Caspi V; Mattivi F; Delledonne M; Pezzotti M; Rachmilevitch S; Cramer GR; Fait A BMC Plant Biol; 2014 Jul; 14():188. PubMed ID: 25064275 [TBL] [Abstract][Full Text] [Related]
7. Long-term effects of abscisic acid (ABA) on the grape berry phenylpropanoid pathway: Gene expression and metabolite content. Villalobos-González L; Peña-Neira A; Ibáñez F; Pastenes C Plant Physiol Biochem; 2016 Aug; 105():213-223. PubMed ID: 27116369 [TBL] [Abstract][Full Text] [Related]
8. A sense of place: transcriptomics identifies environmental signatures in Cabernet Sauvignon berry skins in the late stages of ripening. Cramer GR; Cochetel N; Ghan R; Destrac-Irvine A; Delrot S BMC Plant Biol; 2020 Jan; 20(1):41. PubMed ID: 31992236 [TBL] [Abstract][Full Text] [Related]
9. Five omic technologies are concordant in differentiating the biochemical characteristics of the berries of five grapevine (Vitis vinifera L.) cultivars. Ghan R; Van Sluyter SC; Hochberg U; Degu A; Hopper DW; Tillet RL; Schlauch KA; Haynes PA; Fait A; Cramer GR BMC Genomics; 2015 Nov; 16():946. PubMed ID: 26573226 [TBL] [Abstract][Full Text] [Related]
10. The common transcriptional subnetworks of the grape berry skin in the late stages of ripening. Ghan R; Petereit J; Tillett RL; Schlauch KA; Toubiana D; Fait A; Cramer GR BMC Plant Biol; 2017 May; 17(1):94. PubMed ID: 28558655 [TBL] [Abstract][Full Text] [Related]
11. Comparison of transcriptional expression patterns of carotenoid metabolism in 'Cabernet Sauvignon' grapes from two regions with distinct climate. Chen WK; Yu KJ; Liu B; Lan YB; Sun RZ; Li Q; He F; Pan QH; Duan CQ; Wang J J Plant Physiol; 2017 Jun; 213():75-86. PubMed ID: 28329733 [TBL] [Abstract][Full Text] [Related]
12. Isolation and characterization of two hydroperoxide lyase genes from grape berries : HPL isogenes in Vitis vinifera grapes. Zhu BQ; Xu XQ; Wu YW; Duan CQ; Pan QH Mol Biol Rep; 2012 Jul; 39(7):7443-55. PubMed ID: 22318551 [TBL] [Abstract][Full Text] [Related]
13. Exogenous application of pectin-derived oligosaccharides to grape berries modifies anthocyanin accumulation, composition and gene expression. Villegas D; Handford M; Alcalde JA; Perez-Donoso A Plant Physiol Biochem; 2016 Jul; 104():125-33. PubMed ID: 27031424 [TBL] [Abstract][Full Text] [Related]
14. Transcriptional analysis of late ripening stages of grapevine berry. Guillaumie S; Fouquet R; Kappel C; Camps C; Terrier N; Moncomble D; Dunlevy JD; Davies C; Boss PK; Delrot S BMC Plant Biol; 2011 Nov; 11():165. PubMed ID: 22098939 [TBL] [Abstract][Full Text] [Related]
15. Abscisic acid stimulated ripening and gene expression in berry skins of the Cabernet Sauvignon grape. Koyama K; Sadamatsu K; Goto-Yamamoto N Funct Integr Genomics; 2010 Aug; 10(3):367-81. PubMed ID: 19841954 [TBL] [Abstract][Full Text] [Related]
16. Effect of Exogenous Abscisic Acid and Methyl Jasmonate on Anthocyanin Composition, Fatty Acids, and Volatile Compounds of Cabernet Sauvignon (Vitis vinifera L.) Grape Berries. Ju YL; Liu M; Zhao H; Meng JF; Fang YL Molecules; 2016 Oct; 21(10):. PubMed ID: 27754331 [TBL] [Abstract][Full Text] [Related]
17. Abscisic acid metabolism and anthocyanin synthesis in grape skin are affected by light emitting diode (LED) irradiation at night. Kondo S; Tomiyama H; Rodyoung A; Okawa K; Ohara H; Sugaya S; Terahara N; Hirai N J Plant Physiol; 2014 Jun; 171(10):823-9. PubMed ID: 24877674 [TBL] [Abstract][Full Text] [Related]
18. Malbec grape (Vitis vinifera L.) responses to the environment: Berry phenolics as influenced by solar UV-B, water deficit and sprayed abscisic acid. Alonso R; Berli FJ; Fontana A; Piccoli P; Bottini R Plant Physiol Biochem; 2016 Dec; 109():84-90. PubMed ID: 27642694 [TBL] [Abstract][Full Text] [Related]
19. Combined physiological, transcriptome, and cis-regulatory element analyses indicate that key aspects of ripening, metabolism, and transcriptional program in grapes (Vitis vinifera L.) are differentially modulated accordingly to fruit size. Wong DC; Lopez Gutierrez R; Dimopoulos N; Gambetta GA; Castellarin SD BMC Genomics; 2016 May; 17():416. PubMed ID: 27245662 [TBL] [Abstract][Full Text] [Related]
20. Transcriptome and metabolite profiling reveals that prolonged drought modulates the phenylpropanoid and terpenoid pathway in white grapes (Vitis vinifera L.). Savoi S; Wong DC; Arapitsas P; Miculan M; Bucchetti B; Peterlunger E; Fait A; Mattivi F; Castellarin SD BMC Plant Biol; 2016 Mar; 16():67. PubMed ID: 27001212 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]