These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

397 related articles for article (PubMed ID: 19426819)

  • 21. Single unit recording capabilities of a 100 microelectrode array.
    Nordhausen CT; Maynard EM; Normann RA
    Brain Res; 1996 Jul; 726(1-2):129-40. PubMed ID: 8836553
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparison of applied and induced current electrical impedance tomography.
    Tanguay LF; Gagnon H; Guardo R
    IEEE Trans Biomed Eng; 2007 Sep; 54(9):1643-9. PubMed ID: 17867356
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Brain mapping of visual evoked activity--topographical and functional components.
    Skrandies W
    Acta Neurol Taiwan; 2005 Dec; 14(4):164-78. PubMed ID: 16425543
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Time frequency characterization of evoked brain activity in multiple electrode recordings.
    Majumdar NS; Pribram KH; Barrett TW
    IEEE Trans Biomed Eng; 2006 Dec; 53(12 Pt 1):2516-24. PubMed ID: 17153209
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A new method of spatio-temporal topographic mapping by correlation coefficient of K-means cluster.
    Li L; Yao D
    Brain Topogr; 2007; 19(4):161-76. PubMed ID: 17238000
    [TBL] [Abstract][Full Text] [Related]  

  • 26. On determining the intracranial sources of visual evoked potentials from scalp topography: a reply to Kelly et al. (this issue).
    Ales JM; Yates JL; Norcia AM
    Neuroimage; 2013 Jan; 64():703-11. PubMed ID: 22982584
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrical impedance tomography of human brain activity with a two-dimensional ring of scalp electrodes.
    Tidswell AT; Gibson A; Bayford RH; Holder DS
    Physiol Meas; 2001 Feb; 22(1):167-75. PubMed ID: 11236877
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A single-trial analytic framework for EEG analysis and its application to target detection and classification.
    Poolman P; Frank RM; Luu P; Pederson SM; Tucker DM
    Neuroimage; 2008 Aug; 42(2):787-98. PubMed ID: 18555700
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optimum design of electrode structure and parameters in electrical impedance tomography.
    Yan W; Hong S; Chaoshi R
    Physiol Meas; 2006 Mar; 27(3):291-306. PubMed ID: 16462015
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Study of the optimum level of electrode placement for the evaluation of absolute lung resistivity with the Mk3.5 EIT system.
    Nebuya S; Noshiro M; Yonemoto A; Tateno S; Brown BH; Smallwood RH; Milnes P
    Physiol Meas; 2006 May; 27(5):S129-37. PubMed ID: 16636404
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A broadband high-frequency electrical impedance tomography system for breast imaging.
    Halter RJ; Hartov A; Paulsen KD
    IEEE Trans Biomed Eng; 2008 Feb; 55(2 Pt 1):650-9. PubMed ID: 18270001
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effect of stimulation frequency and retinal stimulus location on visual evoked potential topography.
    Skrandies W
    Brain Topogr; 2007; 20(1):15-20. PubMed ID: 17587164
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Assessment of 1-lead and 2-lead electrode patterns in electrical impedance endotomography.
    Fournier-Desseux A; Jossinet J
    Physiol Meas; 2005 Aug; 26(4):337-49. PubMed ID: 15886430
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of methods for optimal choice of the regularization parameter for linear electrical impedance tomography of brain function.
    Abascal JF; Arridge SR; Bayford RH; Holder DS
    Physiol Meas; 2008 Nov; 29(11):1319-34. PubMed ID: 18854604
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A method for removing artefacts from continuous EEG recordings during functional electrical impedance tomography for the detection of epileptic seizures.
    Fabrizi L; Yerworth R; McEwan A; Gilad O; Bayford R; Holder DS
    Physiol Meas; 2010 Aug; 31(8):S57-72. PubMed ID: 20647617
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification of a suitable current waveform for acute stroke imaging.
    Romsauerova A; McEwan A; Holder DS
    Physiol Meas; 2006 May; 27(5):S211-9. PubMed ID: 16636412
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Simulation study of line electrode for electrical impedance tomography].
    Wang Y; Sha H; Ren C
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Oct; 24(5):986-9. PubMed ID: 18027681
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In vivo measurement of the brain and skull resistivities using an EIT-based method and the combined analysis of SEF/SEP data.
    Gonçalves S; de Munck JC; Verbunt JP; Heethaar RM; da Silva FH
    IEEE Trans Biomed Eng; 2003 Sep; 50(9):1124-8. PubMed ID: 12943281
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Design of electrodes and current limits for low frequency electrical impedance tomography of the brain.
    Gilad O; Horesh L; Holder DS
    Med Biol Eng Comput; 2007 Jul; 45(7):621-33. PubMed ID: 17597329
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Monitoring of lung edema using focused impedance spectroscopy: a feasibility study.
    Mayer M; Brunner P; Merwa R; Scharfetter H
    Physiol Meas; 2005 Jun; 26(3):185-92. PubMed ID: 15798294
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.