BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 19427393)

  • 1. From action potential to contraction: neural control and excitation-contraction coupling in larval muscles of Drosophila.
    Peron S; Zordan MA; Magnabosco A; Reggiani C; Megighian A
    Comp Biochem Physiol A Mol Integr Physiol; 2009 Oct; 154(2):173-83. PubMed ID: 19427393
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of neuromuscular synapses and contraction in Drosophila 3rd instar larvae.
    Ormerod KG; Jung J; Mercier AJ
    J Neurogenet; 2018 Sep; 32(3):183-194. PubMed ID: 30303434
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Longitudinal body wall muscles are electrically coupled across the segmental boundary in the third instar larva of Drosophila melanogaster.
    Ueda A; Kidokoro Y
    Invert Neurosci; 1996 Mar; 1(4):315-22. PubMed ID: 9372149
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The inhibitor kappaB-ortholog Cactus is necessary for normal neuromuscular function in Drosophila melanogaster.
    Beramendi A; Peron S; Megighian A; Reggiani C; Cantera R
    Neuroscience; 2005; 134(2):397-406. PubMed ID: 15975723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tissue-specific targeting of Hsp26 has no effect on heat resistance of neural function in larval Drosophila.
    Mileva-Seitz V; Xiao C; Seroude L; Robertson RM
    Cell Stress Chaperones; 2008; 13(1):85-95. PubMed ID: 18347945
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tissue-specific transcription of the neuronal gene Lim3 affects Drosophila melanogaster lifespan and locomotion.
    Rybina OY; Sarantseva SV; Veselkina ER; Bolschakova OI; Symonenko AV; Krementsova AV; Ryabova EV; Roshina NV; Pasyukova EG
    Biogerontology; 2017 Oct; 18(5):739-757. PubMed ID: 28466185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of forward and backward locomotion through intersegmental feedback circuits in Drosophila larvae.
    Kohsaka H; Zwart MF; Fushiki A; Fetter RD; Truman JW; Cardona A; Nose A
    Nat Commun; 2019 Jun; 10(1):2654. PubMed ID: 31201326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D image stack reconstruction in live cell microscopy of Drosophila muscles and its validation.
    Du T; Wasser M
    Cytometry A; 2009 Apr; 75(4):329-43. PubMed ID: 19130481
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional roles for beta1,4-N-acetlygalactosaminyltransferase-A in Drosophila larval neurons and muscles.
    Haines N; Stewart BA
    Genetics; 2007 Feb; 175(2):671-9. PubMed ID: 17151241
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Action of octopamine and tyramine on muscles of Drosophila melanogaster larvae.
    Ormerod KG; Hadden JK; Deady LD; Mercier AJ; Krans JL
    J Neurophysiol; 2013 Oct; 110(8):1984-96. PubMed ID: 23904495
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transmembrane channel-like (tmc) gene regulates Drosophila larval locomotion.
    Guo Y; Wang Y; Zhang W; Meltzer S; Zanini D; Yu Y; Li J; Cheng T; Guo Z; Wang Q; Jacobs JS; Sharma Y; Eberl DF; Göpfert MC; Jan LY; Jan YN; Wang Z
    Proc Natl Acad Sci U S A; 2016 Jun; 113(26):7243-8. PubMed ID: 27298354
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coordination and modulation of locomotion pattern generators in Drosophila larvae: effects of altered biogenic amine levels by the tyramine beta hydroxlyase mutation.
    Fox LE; Soll DR; Wu CF
    J Neurosci; 2006 Feb; 26(5):1486-98. PubMed ID: 16452672
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of excitation-contraction coupling at the Drosophila neuromuscular junction.
    Ormerod KG; Scibelli AE; Littleton JT
    J Physiol; 2022 Jan; 600(2):349-372. PubMed ID: 34788476
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dendritic and Axonal L-Type Calcium Channels Cooperate to Enhance Motoneuron Firing Output during
    Kadas D; Klein A; Krick N; Worrell JW; Ryglewski S; Duch C
    J Neurosci; 2017 Nov; 37(45):10971-10982. PubMed ID: 28986465
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of Drosophila larval crawling at the level of organism, segment, and somatic body wall musculature.
    Heckscher ES; Lockery SR; Doe CQ
    J Neurosci; 2012 Sep; 32(36):12460-71. PubMed ID: 22956837
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional redundancy of FMRFamide-related peptides at the Drosophila larval neuromuscular junction.
    Hewes RS; Snowdeal EC; Saitoe M; Taghert PH
    J Neurosci; 1998 Sep; 18(18):7138-51. PubMed ID: 9736637
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigating the safety factor at an invertebrate neuromuscular junction.
    Marrus SB; DiAntonio A
    J Neurobiol; 2005 Apr; 63(1):62-9. PubMed ID: 15685612
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Overexpression of miRNA-9 Generates Muscle Hypercontraction Through Translational Repression of Troponin-T in
    Katti P; Thimmaya D; Madan A; Nongthomba U
    G3 (Bethesda); 2017 Oct; 7(10):3521-3531. PubMed ID: 28866639
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A circuit mechanism for the propagation of waves of muscle contraction in Drosophila.
    Fushiki A; Zwart MF; Kohsaka H; Fetter RD; Cardona A; Nose A
    Elife; 2016 Feb; 5():. PubMed ID: 26880545
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Morphological and functional effects of altered cysteine string protein at the Drosophila larval neuromuscular junction.
    Dawson-Scully K; Lin Y; Imad M; Zhang J; Marin L; Horne JA; Meinertzhagen IA; Karunanithi S; Zinsmaier KE; Atwood HL
    Synapse; 2007 Jan; 61(1):1-16. PubMed ID: 17068777
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.