BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 19427393)

  • 21. A subset of interneurons required for Drosophila larval locomotion.
    Yoshikawa S; Long H; Thomas JB
    Mol Cell Neurosci; 2016 Jan; 70():22-9. PubMed ID: 26621406
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Alary muscles and thoracic alary-related muscles are atypical striated muscles involved in maintaining the position of internal organs.
    Bataillé L; Colombié N; Pelletier A; Paululat A; Lebreton G; Carrier Y; Frendo JL; Vincent A
    Development; 2020 Apr; 147(8):. PubMed ID: 32188630
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Intrinsic control of muscle attachment sites matching.
    Carayon A; Bataillé L; Lebreton G; Dubois L; Pelletier A; Carrier Y; Wystrach A; Vincent A; Frendo JL
    Elife; 2020 Jul; 9():. PubMed ID: 32706334
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Drosophila ammonium transporter Rh50 is required for integrity of larval muscles and neuromuscular system.
    Lecompte M; Cattaert D; Vincent A; Birman S; Chérif-Zahar B
    J Comp Neurol; 2020 Jan; 528(1):81-94. PubMed ID: 31273786
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Neuromuscular junction in abdominal muscles of Drosophila melanogaster during adulthood and aging.
    Beramendi A; Peron S; Casanova G; Reggiani C; Cantera R
    J Comp Neurol; 2007 Apr; 501(4):498-508. PubMed ID: 17278125
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transient BK outward current enhances motoneurone firing rates during Drosophila larval locomotion.
    Kadas D; Ryglewski S; Duch C
    J Physiol; 2015 Nov; 593(22):4871-88. PubMed ID: 26332699
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In vivo measurement of muscle output in intact Drosophila.
    Elliott CJ; Sparrow JC
    Methods; 2012 Jan; 56(1):78-86. PubMed ID: 22037247
    [TBL] [Abstract][Full Text] [Related]  

  • 28. dHb9 expressing larval motor neurons persist through metamorphosis to innervate adult-specific muscle targets and function in Drosophila eclosion.
    Banerjee S; Toral M; Siefert M; Conway D; Dorr M; Fernandes J
    Dev Neurobiol; 2016 Dec; 76(12):1387-1416. PubMed ID: 27168166
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A modified minimal hemolymph-like solution, HL3.1, for physiological recordings at the neuromuscular junctions of normal and mutant Drosophila larvae.
    Feng Y; Ueda A; Wu CF
    J Neurogenet; 2004; 18(2):377-402. PubMed ID: 15763995
    [TBL] [Abstract][Full Text] [Related]  

  • 30. DSC1 channel-dependent developmental regulation of pyrethroid susceptibility in Drosophila melanogaster.
    Chen X; Wang Y; Wu W; Dong K; Hu Z
    Pestic Biochem Physiol; 2018 Jun; 148():190-198. PubMed ID: 29891372
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Activity-dependent development of the neuromuscular synapse during Drosophila embryogenesis.
    Broadie K; Bate M
    Neuron; 1993 Oct; 11(4):607-19. PubMed ID: 7691105
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of excitatory premotor interneurons which regulate local muscle contraction during Drosophila larval locomotion.
    Hasegawa E; Truman JW; Nose A
    Sci Rep; 2016 Jul; 6():30806. PubMed ID: 27470675
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Neurotransmitter levels and synaptic strength at the Drosophila larval neuromuscular junction are not altered by mutation in the sluggish-A gene, which encodes proline oxidase and affects adult locomotion.
    Shayan AJ; Brodin L; Ottersen OP; Birinyi A; Hill CE; Govind CK; Atwood HL; Shupliakov O
    J Neurogenet; 2000 Sep; 14(3):165-92. PubMed ID: 10992167
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sidestep-induced neuromuscular miswiring causes severe locomotion defects in
    Kinold JC; Pfarr C; Aberle H
    Development; 2018 Aug; 145(17):. PubMed ID: 30166331
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synaptic transmission reversibly conditioned by single-gene mutation in Drosophila melanogaster.
    Ikeda K; Ozawa S; Hagiwara S
    Nature; 1976 Feb; 259(5543):489-91. PubMed ID: 176591
    [No Abstract]   [Full Text] [Related]  

  • 36. Intracellular Recordings of Postsynaptic Voltage Responses at the Drosophila Neuromuscular Junction.
    Valakh V; Flyer-Adams JG
    Methods Mol Biol; 2020; 2143():159-168. PubMed ID: 32524479
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Why Quantification Matters: Characterization of Phenotypes at the Drosophila Larval Neuromuscular Junction.
    Sanhueza M; Kubasik-Thayil A; Pennetta G
    J Vis Exp; 2016 May; (111):. PubMed ID: 27213489
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development of action potential in larval muscle fibers in Drosophila melanogaster.
    Suzuki N; Kano M
    J Cell Physiol; 1977 Dec; 93(3):383-8. PubMed ID: 412852
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparative studies on troponin, a Ca²⁺-dependent regulator of muscle contraction, in striated and smooth muscles of protochordates.
    Obinata T; Sato N
    Methods; 2012 Jan; 56(1):3-10. PubMed ID: 22027345
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The imbalance of serotonergic circuitry impairing the crop supercontractile muscle activity and the mitochondrial morphology of PD PINK1
    Solari P; Maccioni R; Marotta R; Catelani T; Debellis D; Baroli B; Peddio S; Muroni P; Kasture S; Solla P; Stoffolano JG; Liscia A
    J Insect Physiol; 2018; 111():32-40. PubMed ID: 30393142
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.