These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

353 related articles for article (PubMed ID: 19427418)

  • 1. Encapsulation of alpha-amylase into starch-based biomaterials: an enzymatic approach to tailor their degradation rate.
    Azevedo HS; Reis RL
    Acta Biomater; 2009 Oct; 5(8):3021-30. PubMed ID: 19427418
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro assessment of the enzymatic degradation of several starch based biomaterials.
    Azevedo HS; Gama FM; Reis RL
    Biomacromolecules; 2003; 4(6):1703-12. PubMed ID: 14606899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Drug release from starch-acetate microparticles and films with and without incorporated alpha-amylase.
    Tuovinen L; Peltonen S; Liikola M; Hotakainen M; Lahtela-Kakkonen M; Poso A; Järvinen K
    Biomaterials; 2004 Aug; 25(18):4355-62. PubMed ID: 15046926
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of binder additives on terbutaline hydrogels of alpha-PVA/NaCl/H(2)O system in drug delivery: I. Effect of gelatin and soluble starch.
    Shaheen SM; Takezoe K; Yamaura K
    Biomed Mater Eng; 2004; 14(4):371-82. PubMed ID: 15472386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Incorporation of alpha-amylase enzyme and a bioactive filler into hydrophilic, partially degradable, and bioactive cements (HDBCs) as a new approach to tailor simultaneously their degradation and bioactive behavior.
    Boesel LF; Azevedo HS; Reis RL
    Biomacromolecules; 2006 Sep; 7(9):2600-9. PubMed ID: 16961323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transport properties of EVAl-starch-alpha amylase membranes.
    Coluccio ML; Barbani N; Bianchini A; Silvestri D; Mauri R
    Biomacromolecules; 2005; 6(3):1389-96. PubMed ID: 15877357
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes on surface morphology of corn starch blend films.
    Araújo MA; Cunha AM; Mota M
    J Biomed Mater Res A; 2010 Sep; 94(3):720-9. PubMed ID: 20225217
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immobilization of a thermostable alpha-amylase by covalent binding to an alginate matrix increases high temperature usability.
    Tee BL; Kaletunç G
    Biotechnol Prog; 2009; 25(2):436-45. PubMed ID: 19353735
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amylase-functionalized mesoporous silica thin films as robust biocatalyst platforms.
    Bellino MG; Regazzoni AE; Soler-Illia GJ
    ACS Appl Mater Interfaces; 2010 Feb; 2(2):360-5. PubMed ID: 20356181
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzymatic degradation of starch thermoplastic blends using samples of different thickness.
    Araújo MA; Cunha AM; Mota M
    J Mater Sci Mater Med; 2009 Feb; 20(2):607-14. PubMed ID: 18853238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrolysis of soluble starch using Bacillus licheniformis alpha-amylase immobilized on superporous CELBEADS.
    Shewale SD; Pandit AB
    Carbohydr Res; 2007 Jun; 342(8):997-1008. PubMed ID: 17368436
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzymatic erosion of bioartificial membranes to control drug delivery.
    Coluccio ML; Ciardelli G; Bertoni F; Silvestri D; Cristallini C; Giusti P; Barbani N
    Macromol Biosci; 2006 Jun; 6(6):403-11. PubMed ID: 16775815
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzymatic hydrolysis of soluble starch with an alpha-amylase from Bacillus licheniformis.
    Bravo Rodríguez V; Jurado Alameda E; Martínez Gallegos JF; Reyes Requena A; García López AI
    Biotechnol Prog; 2006; 22(3):718-22. PubMed ID: 16739954
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mango starch degradation. II. The binding of alpha-amylase and beta-amylase to the starch granule.
    Peroni FH; Koike C; Louro RP; Purgatto E; do Nascimento JR; Lajolo FM; Cordenunsi BR
    J Agric Food Chem; 2008 Aug; 56(16):7416-21. PubMed ID: 18656927
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of supermacroporous cryogel for bioreactors continuous starch hydrolysis.
    Guilherme EPX; de Oliveira JP; de Carvalho LM; Brandi IV; Santos SHS; de Carvalho GGP; Cota J; Mara Aparecida de Carvalho B
    Electrophoresis; 2017 Nov; 38(22-23):2940-2946. PubMed ID: 28777449
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antifirming effects of starch degrading enzymes in bread crumb.
    Goesaert H; Leman P; Bijttebier A; Delcour JA
    J Agric Food Chem; 2009 Mar; 57(6):2346-55. PubMed ID: 19239186
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immobilization of Bacillus licheniformis α-amylase onto reactive polymer films.
    Cordeiro AL; Lenk T; Werner C
    J Biotechnol; 2011 Jul; 154(4):216-21. PubMed ID: 21536081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing Au nanoparticle uptake by enzyme following the digestion of a starch-Au-nanoparticle composite.
    Deka J; Paul A; Ramesh A; Chattopadhyay A
    Langmuir; 2008 Sep; 24(18):9945-51. PubMed ID: 18712888
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Porcine pancreatic alpha-amylase hydrolysis of native starch granules as a function of granule surface area.
    Kong BW; Kim JI; Kim MJ; Kim JC
    Biotechnol Prog; 2003; 19(4):1162-6. PubMed ID: 12892477
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel enzymatically-mediated drug delivery carrier for bone tissue engineering applications: combining biodegradable starch-based microparticles and differentiation agents.
    Balmayor ER; Tuzlakoglu K; Marques AP; Azevedo HS; Reis RL
    J Mater Sci Mater Med; 2008 Apr; 19(4):1617-23. PubMed ID: 18214645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.